Гид компьютерного мира - Информационный портал
  • Главная
  • Windows
  • Манипуляторные устройства ввода информации презентацию выполнили студентки группы. Устройства ввода информации

Манипуляторные устройства ввода информации презентацию выполнили студентки группы. Устройства ввода информации

Устройства ввода

Клавиатура

Основным устройством ввода информации в компьютер является клавиатура , которая представляет собой совокупность механических датчиков, воспринимающих давление на клавиши и замыкающих тем или иным образом определенную электрическую цепь. В настоящее время распространены два типа клавиатур : с механическими или с мембранными переключателями. В первом случае датчик представляет собой традиционный механизм с контактами из специального сплава. Во втором случае переключатель состоит из двух мембран: верхней - активной, нижней - пассивной, разделенных третьей мембраной-прокладкой.

Как правило, внутри корпуса любой клавиатуры , кроме датчиков клавиш, расположены электронные схемы дешифрации и микроконтроллер. Обмен информации между клавиатурой и системной платой осуществляется по специальному последовательному интерфейсу 11-битовыми блоками. Основной принцип работы клавиатуры заключается в сканировании переключателей клавиш. Замыканию и размыканию любого из этих переключателей соответствует уникальный цифровой код - скан-код. В случае, когда клавиша отпускается, клавиатура IBM PC AT предваряет скан-код кодом F016. Когда контроллер клавиатуры фиксирует нажатие или отпускание клавиши, он инициирует аппаратное прерывание IRQ1. Если в клавиатурах компьютеров типа IBM PC XT передача данных может осуществляться только в одном направлении, то в клавиатурах типа IBM PC AT подобная связь возможна уже в двух направлениях, т. е. клавиатура может принимать специальные команды (установки параметров задержки автоповтора и частоты автоповтора). Подключение клавиатуры к системной плате выполняется посредством электрически идентичных разъемов 5 DIN 5 или 6 mini-DIN , последний впервые был представлен в IBM PS/2, откуда и унаследовал свое "жаргонное" название. Для обеспечения двунаправленного обмена используется единственная линия данных, требующая, однако, выводов с открытым коллектором.

Мышь

Первую компьютерную мышь создал Дуглас Энджельбарт в 1963 году в Стэндфордском исследовательском центре. Распространение мыши получили благодаря росту популярности программных систем с графическим интерфейсом пользователя. Мышь делает удобным манипулирование такими широко распространенными в графических пакетах объектами, как окна, меню, кнопки, пиктограммы и т.д.

Первая мышь при движении вращала два колеса, которые были связаны с осями переменных резисторов. Перемещение курсора такой мыши вызывалось изменением сопротивления переменных резисторов. Большинство современных мышей имеют оптико-механическую конструкцию (рис. 16.1). С поверхностью, по которой перемещают мышь , соприкасается тяжелый обрезиненный шарик сравнительно большого диаметра. При перемещении мыши этот шарик может вращать прижатые к нему два перпендикулярных ролика. Ось вращения одного из роликов вертикальна, а другого - горизонтальна. На оси роликов установлены датчики, представляющие собой диски с прорезями, по разные стороны которых располагаются оптопары "светодиод-фотодиод ". Порядок, в котором освещаются фоточувствительные элементы одной оси, определяет направление перемещения мыши , а частота приходящих от них импульсов - скорость.


Рис. 16.1. Устройство оптико-механической мыши

Другой популярной конструкцией мыши является полностью оптическая конструкция. С помощью светодиода и системы линз, фокусирующих его свет, под мышью подсвечивается участок поверхности. Отраженный от этой поверхности свет, в свою очередь, собирается другой линзой и попадает на приемный сенсор микросхемы процессора обработки изображений. Этот чип делает снимки поверхности под мышью с высокой частотой и обрабатывает их. На основании анализа череды последовательных снимков, представляющих собой квадратную матрицу из пикселей разной яркости, интегрированный DSP-процессор высчитывает результирующие показатели, свидетельствующие о направлении перемещения мыши вдоль осей Х и Y, и передает результаты своей работы на периферийный интерфейс. Основные характеристики, обеспечивающие надежность работы оптических мышей , определяются техническими параметрами применяемых сенсоров (табл. 16.1).

Клавиатура является основным устройством ввода информации в компьютер. В техническом аспекте компьютерная клавиатура представляет совокупность механических датчиков, воспринимающих давление на клавиши и замыкающих тем или иным образом определенную электрическую цепь. В настоящее время распространены два типа клавиатур:

с механическими переключателями;

с мембранными переключателями.

В первом случае датчик представляет традиционный механизм с контактами с драгоценного металла, а во втором -- тонкие посеребренные листки пластика, между которыми с небольшим воздушным зазором находится, например, проводящая жидкость. Неудивительно, что менее дорогие клавиатуры с мембранными переключателями получили большее распространение. Но и их клавиши рассчитаны на несколько миллионов нажатий.

Внутри корпуса клавиатуры, помимо датчиков клавиш, расположены электронные схемы дешифрации. Контроллер клавиатуры, с помощью которого организуется взаимодействие клавиатуры с другими узлами компьютера, расположен непосредственно на системной плате (за исключением старых моделей компьютеров XT и AT 286, у которых контроллер выполнялся в виде отдельной микросхемы). Основной принцип работы клавиатуры с контроллером заключается в сканировании переключателей клавиш. Замыканию и размыканию любого из этих переключателей (т.е. нажатию или отпусканию любой из 101 или 104 клавиш) соответствует уникальный цифровой код -- скан-код размером один байт.

Привлекательность той или иной клавиатуры в основном зависит от расположения клавиш, тактильных ощущений и усилия при нажатии клавиши. Наиболее распространенным расположением клавиш (раскладкой клавиатуры) является QWERTY (ЙЦУКЕН). Есть около 60 клавиш с буквами, цифрами, знаками пунктуации и другими символами, и еще около 40 клавиш, предназначенных для управления компьютером и исполнения программ. Продублированы клавиши управления курсором, а также клавиши Ctrl, Alt, я (Win). Функциональные клавиши F1…F12 вынесены в верхний ряд.

На некоторых современных клавиатурах есть специальные клавиши, служащие для выполнения условий стандартов энергосбережения (Sleep -- «спящий режим» и др.), а также функциональная клавиша «Fn/Key+», позволяющая использовать функциональные клавиши F1…F12 в среде мультимедиа-программ. В последнее время стали появляться клавиатуры, которые наряду с мультимедиа-клавишами имеют и клавиши быстрого управления в среде Интернет-приложений. Улучшается также и дизайн оформления клавиатур.

Манипулятор «мышь»

Не менее важным инструментом управления компьютером и ввода информации, несомненно, является кнопочный манипулятор «мышь». Желание исключить непроизводительное частое повторное нажатие некоторых клавиш, особенно при управлении в среде многих программ, возникло у разработчиков аппаратного обеспечения сразу после начала массового распространения персональных компьютеров.

Мышь -- это устройство, предназначенное для обеспечения удобства работы с современным программным обеспечением. Суть управления программами зачастую сводится на совмещении курсора «мыши» на экране с соответствующими командными кнопками на экране и нажатию одной из двух кнопок (чаще достаточно даже одной) «мыши». Понятно, что движения корпуса «мыши» соответствуют движениям курсора «мыши» на экране, что создает иллюзию «продолжения руки на экране» и обеспечивает простому управления и легкость освоения компьютера.

Мышь представляет собой электронно-механическое устройство, с помощью которого осуществляется дистанционное управление курсором на экране монитора. Внутри мыши помещен обрезиненный шарик. При движении мыши по гладкой поверхности шарик вращается. Его вращение передается двум валикам, оси которых перпендикулярны между собой. На валиках установлены диски с прорезами. С одной стороны от диска стоит небольшой источник света (светодиод), а с другой стороны -- приемник света (фототранзистор). При вращении дисков луч света, идущий от светодиода к фототранзистору, прерывается, в результате чего на фототранзисторе возникают импульсы (сигналы). Эти сигналы по проводам передаются в компьютер, где и обрабатываются.

Компьютерная мышь продолжает развиваться: появились оптические (не имеющие шарика, соответственно -- не загрязняющиеся) и беспроводные мыши (через инфракрасные порты дистанционного управления), водонепроницаемые мыши и многие другие интересные разработки.

Мышь и трекбол до сих пор являются самым распространенными устройствами управления. Трэкбол в основном применяется в портативных компьютерах (ноутбуках), где применение традиционной «мыши» затруднено.

Трэкбол -- это как бы перевернутая «мышь», корпус которой вмонтирован в корпус самого компьютера или у которой шарик вынесен наверх, а несколько увеличенный шарик вращается на месте. Трэкбол имеет такие же кнопки, что и «мышь».

В субноутбуках иногда применяют и так называемые тачпэды -- своеобразные небольшие чувствительные площадки, по которой следует водить …пальцем. Однако такие устройства требуют определенных навыков.

Мировая компьютерная индустрия ведет постоянные поиски в совершенствовании устройств ввода. Существует мышь Keiboard необычной конструкции, которую следовало бы назвать как «мышь-клавиатура». Она представляет собой устройство, выполненное в виде пульта дистанционного управления или мобильного телефона. Благодаря необычной форме, на «мыши» имеется полный набор клавиш, как на мобильном телефоне, что дает возможность набирать небольшие тексты одной рукой. По мнению разработчика, такая мышь должна понравиться любителям компьютерных игр. Кроме того, с ее помощью удобно управлять различными, в том числе, и мультимедийными приложениями.

Помимо десяти клавиш для ввода текста, на мыши имеются клавиши пробела, Backspace, Del, Esc, Tab и Enter. Устройство обладает всеми функциями обычной мыши и имеет клавишу прокрутки.

Информатика: аппаратные средства персонального компьютера Яшин Владимир Николаевич

5.2.2.2. Устройства ввода информации в персональный компьютер

В качестве устройств ввода информации в ПК используются клавиатура, координатные устройства ввода (манипуляторы типа мышь, трекбол, контактная или сенсорная панель, джойстик), сканер, цифровые камеры (цифровые фотоаппараты, видеокамеры), микрофон и т. д.

Клавиатурой (keyboard) называется устройство для ручного ввода информации в ПК. Современные типы клавиатур различаются конструктивным исполнением, количеством и назначением клавиш, способом соединения с системным блоком, способом формирования кода символа при нажатии клавиши и т. д.

Конструктивное исполнение во многом определяется фирмой-изготовителем клавиатуры, которая, как правило, учитывает особенности операционной системы, с которой работает пользователь (например, клавиатура, ориентированная на использование операционной системы семейства Windows).

Клавиатуры различаются количеством и назначением клавиш. Для IBM-совместимых ПК за основу принят стандарт клавиатуры, имеющей 101 клавишу, при этом клавиши сгруппированы в блоки: блок функциональных клавиш (F1, F2, F3 и т. д.), блок букв, цифр и вспомогательных символов; блок управляющих клавиш (Shift, Ctrl, Alt и т. д.); блок мультимедийных клавиш; блок цифровых клавиш.

По способу соединения с системным блоком различаются проводные и беспроводные клавиатуры. В IBM-совместимых ПК проводная клавиатура соединяется с системным блоком посредством электрического кабеля, который подключается к СОМ, PS/2 или USB портам системного блока. В беспроводной клавиатуре передача информации в системный блок происходит с помощью передатчика инфракрасного излучения, приемник инфракрасного излучения подключается к порту USB.

В IBM-совместимых ПК стандартной конфигурации имеются два последовательных порта – СОМ1 и COM2 (от англ. communicate – передавать), в которых данные, предварительно сформированные в пакеты, передаются побитно. Передача данных происходит под управлением интерфейса (протокол передачи) RS-232. Обмен данными в соответствии со спецификацией протокола RS-232 происходит последовательно, методом асинхронной передачи. При этом каждому байту предшествует так называемый старт-бит (всегда имеющий значение логического). Он сигнализирует приемнику о начале пакета. За ним следуют биты данных и (не всегда) бит четности. Завершает посылку стоп-бит, сигнализирующий о начале паузы между пакетами.

Выпускаемая в настоящее время клавиатура не подключается к системному блоку ПК посредством порта СОМ, поскольку данный порт, также как и LPT (параллельный), ориентирован на архитектуру ПК, в которых применялась системная шина ISA. Для подключения клавиатуры используются в основном последовательные порты ввода данных PS/2 и USB, работа которых осуществляется под управлением протоколов передачи данных PS/2 и USB.

По способу формирования кода символа при нажатии клавиши в современной клавиатуре применяется способ, при котором микроконтроллер (клавиатурный микропроцессор) последовательно опрашивает клавиши, формирует двоичный скан-код клавиши и передает его в системный блок. При таком способе передается не код символа, нарисованный на клавише, а код клавиши, которому затем программным путем присваивается соответствующий символ. Такой способ позволяет легко менять раскладку клавиатуры с латинской на кириллицу и наоборот при помощи управляющих клавиш, например (знак плюс означает совместное нажатие клавиш).

К координатным устройствам ввода относятся манипуляторы типа мышь, трекбол, контактная или сенсорная панель (TouchPad), джойстик. Данные устройства позволяют перемещать курсор или другие объекты соответствующих программ по двухмерному пространству экрана монитора с целью облегчения взаимодействия пользователя с ПК при вводе информации. Многие прикладные и системные компьютерные программы рассчитаны на интенсивное использование данных устройств.

Манипулятор типа мышь был изобретен Д. Энгельбартом в 1960-х гг. XX в. в США и свое название получил из-за некоторого сходства с настоящей мышью. При перемещении мыши по гладкой поверхности формируются два сигнала, которые передаются в системный блок и интерпретируются программой управления мышью как координаты точки двухмерного пространства экрана. Результатом этого является перемещение курсора по экрану. При нажатии клавиш (кнопок) или ролика, а также вращения его пальцем формируются и передаются сигналы в системный блок, которые затем однозначно интерпретируются программой управления мышью. С помощью нажатий на клавиши мыши или ролика, а также его вращения можно производить различные действия, при этом используются как одиночные, так и двойные нажатия (щелчки). Действия, которые следуют после таких нажатий клавиш мыши, зависят от конкретной компьютерной программы. Например, одинарный щелчок левой кнопкой мыши или удерживание кнопки позволяет выделять или перемещать объекты на рабочем столе операционных систем семейства Windows, двойной щелчок мышью по пиктограмме вызывает запуск соответствующей программы, щелчок правой кнопкой вызывает контекстное меню и т. д.

Манипуляторы типа мышь различаются по конструктивному исполнению, принципу работы, способу соединения с системным блоком и т. д.

Конструктивное исполнение мыши зависит от фирмы-производителя (Microsoft, Genius, Samsung и т. д.) и различается по внешнему виду и количеству кнопок. В IBM-совместимых ПК используются двух– и трехкнопочные мыши.

По принципу работы мыши подразделяются на электронно-механические и оптоэлектронные. Электронно-механическая мышь состоит из резинового шарика, вращающегося при перемещении мыши, двух роликов, расположенных под прямым углом и соприкасающихся с резиновым шариком, а также электронной схемы, преобразующей вращение роликов в последовательность электрических импульсов, передаваемых в системный блок ПК. Все компоненты электронно-механической мыши помещаются в корпус. В оптоэлектронной мыши отсутствуют подвижные механические элементы, а количество электрических импульсов, пропорциональных перемещению мыши и передаваемых в системный блок, формируются с помощью оптоэлектронных схем. Оптоэлектронные мыши значительно надежнее электронно-механических.

По способу соединения с системным блоком различаются проводные и беспроводные мыши. В IBM-совместимых ПК проводная мышь соединяется с системным блоком посредством электрического кабеля, который подключается к PS/2– или USB-портам системного блока. В беспроводной мыши передача информации в системный блок происходит с помощью передатчика инфракрасного излучения, приемник инфракрасного излучения подключается к порту USB.

Кроме мыши к координатным устройствам ввода относятся также трекбол, контактная, или сенсорная, панель, джойстик.

Трекбол по своему принципу действия аналогичен электронно-механической мыши, разница состоит лишь в том, что вместо перемещения мыши для вращения шарика, пользователь пальцем вращает сам шарик, который встраивается обычно в верхнюю часть клавиатуры ПК или корпуса мобильного ПК.

Сенсорная панель (TouchPad) представляет собой панель прямоугольной формы, которая чувствительна к нажатию пальцев и выполняет те же функции, что и манипулятор типа мышь. При касании пальцем руки экрана сенсорной панели в области касания происходит изменение электрических параметров (например, электрического заряда), что фиксируется электронным устройством сенсорной панели, и затем изменение электрического сигнала передается в контроллер, где с помощью программы обработки определяются координаты пальца на поверхности панели и соответственно координаты курсора на экране монитора ПК. Одинарный или двойной щелчок пальцем по экрану сенсорной панели соответствует нажатию кнопок мыши. Сенсорная панель используется преимущественно в мобильных ПК и встраивается в их корпус.

Джойстик – это устройство для ручного управления движением курсора на экране монитора. При этом в качестве курсора могут выступать различные объекты виртуальной реальности: люди, животные, автомобили и т. д. Используется джойстик с игровыми программами, т. е. является игровым манипулятором.

Для ввода графической информации в ПК используются различные устройства: дигитайзеры (графические планшеты), сканеры, цифровые фотоаппараты и цифровые видеокамеры.

Дигитайзер (digitizer), или графический планшет, представляет собой устройство, предназначенное для ввода в ПК графической информации повышенной сложности рукописным способом. Применение дигитайзеров обусловлено тем, что создание сложного графического изображения в графических редакторах (специальных компьютерных программах, например Paint или Adobe Photoshop) с помощью мыши – крайне затруднительное занятие.

Конструктивно дигитайзер состоит из двух основных компонентов: основания (планшета с рабочей поверхностью) и указателя – пера, напоминающего обычную шариковую ручку, перемещаемого по рабочей поверхности планшета и позволяющего создавать графическое изображение. Принцип работы подавляющего числа современных дигитайзеров основан на методе электромагнитной индукции: указатель при прикосновении к рабочей поверхности излучает сигнал, который принимает плоская антенна, находящаяся под рабочей поверхностью планшета. Антенна представляет собой металлическую сетку, конструктивно выполненную из проволоки или на основе печатной схемы, шаг такой сетки варьируется от 3 до 6 мм. Приняв сигнал, антенна передает его в электронное устройство обработки дигитайзера, где происходит его преобразование в двоичный код, соответствующий местоположению указателя на рабочей поверхности планшета, и далее код передается с помощью электрического кабеля и соответствующего порта ввода (USB – последовательный порт) в системный блок ПК. К основным характеристикам дигитайзера можно отнести: разрешающую способность, т. е. число линий на дюйм (Ipi – line per inch), размеры рабочей области, чувствительность к нажатию и т. д.

Например, запись в прайс-листе организации, торгующей дигитайзерами, может быть представлена в следующем виде:

Genius G-Pen 340 (3" х 4", 2000 lpi, 1024 уровня, USB).

Genius – компания-производитель;

G-Pen 340 – модель дигитайзера;

3" х 4" – рабочая область планшета (примерно 76 мм х 102 мм);

2000 lpi – разрешающая способность;

1024 уровня – чувствительность к нажатию на рабочую поверхность планшета;

USB – порт (интерфейс).

При подключении дигитайзера к ПК посредством интерфейса USB и его автоматического определения операционной системой Windows ХР он готов к работе, однако для управления чувствительностью к нажатию указателя потребуется специальная компьютерная программа – драйвер, которая поставляется совместно с дигитайзером.

Основными компаниями – производителями дигитайзеров являются Wacom (Япония), CalComp (США), Genius (Тайвань), Aiptek (Тайвань) и т. д.

Сканеры (от англ. scan – пристально разглядывать) являются самыми распространенными в настоящее время устройствами для ввода графической и текстовой информации с бумажного листа или пленки. В зависимости от возможности воспроизведения цвета графического изображения они подразделяются на черно-белые и цветные, а по конструктивному признаку – на ручные, роликовые и планшетного типа.

Принцип преобразования графического изображения в цифровую форму в сканерах основан на сканировании изображения, т. е. его последовательного считывания по строкам, преобразования в двоичный код и последующего ввода в ПК. В процессе сканирования изображения оно освещается с помощью специальных источников светового излучения, и затем отраженный свет воспринимается оптической системой сканера. Таким образом, сканер преобразует графическое изображение во множество точек, определяя для каждой точки ее координаты и цвет. По этим данным после соответствующей обработки на экране монитора ПК воспроизводится копия графического изображения.

В современных цветных сканерах в основном используется источник излучения белого света, а в оптической системе устанавливается специальный RGB-фильтр, который и определяет по отраженному свету в процессе сканирования цвет точек, из которого состоит графическое изображение. В черно-белых сканерах такой фильтр отсутствует.

Ручной сканер представляет собой устройство, в котором процесс сканирования изображения не является автоматическим, т. е. осуществляется вручную, путем его перемещения относительно графического изображения. Такой сканер позволяет сканировать (считывать) изображение выборочно (частично), а для сканирования всего изображения целиком необходимо производить несколько перемещений (проходов). Для совмещения полученных частей изображения используется специальное программное обеспечение, которое поставляется вместе со сканерами ручного типа. В настоящее время ручные сканеры не пользуются широкой популярностью у владельцев ПК из-за низкой степени автоматизации процесса сканирования изображения.

Роликовый сканер – это устройство, в котором подача листов с графическими изображениями для ввода в компьютер происходит автоматически, т. е. такие сканеры предназначены для пакетной обработки листовых документов, содержащих графическую или текстовую информацию. В этих сканерах лист с изображением или текстом перемещается относительно сканирующей головки. Данный тип сканеров в ПК практически не используется.

Среди перечисленных типов сканеров наиболее широко применяются планшетные сканеры, предназначенные в основном для офисного и домашнего использования, иногда их называют SOHO- сканеры (SOHO – от англ. Small Office Ноте Office). Сканеры этого типа появились в 1980-х гг. XX в. и благодаря оптимальному соотношению функциональных возможностей и удобству использования завоевали у пользователей ПК наибольшую популярность. В планшетных сканерах лист с изображением жестко фиксируется, что обеспечивает высокое качество сканирования и удобство в работе.

Конструктивно планшетный сканер состоит из следующих основных компонентов: корпуса, прозрачного стекла, сканирующей каретки (головки), блока управления, аналогово-цифрового преобразователя (АЦП), микропроцессора (МП), контроллера интерфейса, протяжного механизма, двигателя, блока питания и ряда дополнительных устройств.

Корпуса большинства выпускаемых сегодня планшетных сканеров для офиса и дома в основном сделаны из пластмассы и имеют прямоугольную форму. Для придания прочности корпусу в нем используют специальные элементы, называемые ребрами жесткости. К корпусу планшетного сканера предъявляют достаточно жесткие требования в плане его герметичности, поскольку оптический блок сканера не допускает попадания на него пыли.

Прозрачное стекло находится под крышкой корпуса и предназначено для размещения на нем листа бумаги определенного формата (в основном А4) с нанесенным на лист графической или текстовой информацией или пленки с графическим изображением. После размещения на стекле лист или пленка накрываются крышкой сканера.

Сканирующая каретка – основной подвижный модуль планшетного сканера – устанавливается на лафет и вместе с ним перемещается по направляющим салазкам вдоль корпуса. Данный модуль состоит из следующих компонентов: оптического блока с системой линз и зеркал, светочувствительной матрицы, источника света и инвертора. В качестве основных элементов оптического блока могут использоваться микролинзы с самофокусировкой либо оптический объектив с оптическими зеркалами. Выбор этих элементов зависит от применяемой в сканере светочувствительной матрицы. Микролинзы с самофокусировкой используются совместно со светочувствительной матрицей типа CIS (Contact Image Sensor – контактный оптический датчик), а оптический объектив с оптическими зеркалами со светочувствительной матрицей CCD (Charge Coupled Device – прибор с зарядовой связью).

Сканирующая каретка, в которой используется матрица типа CIS, не имеет лампы подсветки (источника света), оптического объектива и зеркал, а приемный элемент, равный по ширине всему рабочему полю сканирования, состоит из светодиодной линейки (источник света), освещающей поверхность сканируемого изображения, самофокусирующихся микролинз и приемных датчиков (сенсоров) изображения. Отраженный от сканируемого изображения свет проецируется на перемещающийся над изображением вместе с кареткой приемный элемент, фокусируется микролинзами и попадает на приемные датчики, которые преобразуют падающий на них свет в электрический сигнал. Затем этот сигнал усиливается и поступает на вход АЦП. Сканирующая каретка, в которой используется матрица типа CIS, получается очень компактной, что дает возможность создавать достаточно тонкие и легкие сканеры, потребляющие незначительное количество электрической энергии. Однако сканеры, в которых используется эта матрица, имеют ряд недостатков, среди которых можно выделить небольшую глубину фокусировки изображения (глубину резкости). Если поместить на планшет такого сканера толстую книгу, то сканированное изображение получится с размытой полосой посередине, т. е. в том месте, где листы книги не соприкасается со стеклом. Кроме того, сканеры, в которых используется матрица типа CIS, обладают невысокой, по сравнению со сканерами на основе CCD разрешающей способностью – порядка 1200 dpi.

Сканирующая каретка, в которой используется матрица типа CCD, имеет лампу подсветки, оптический объектив и сложную систему зеркал, а приемный элемент представляет линейку приборов с зарядовой связью (матрицу CCD). В качестве лампы подсветки применяется в основном люминесцентная лампа с холодным катодом. Для свечения эту лампу необходимо подключить к высоковольтному источнику переменного напряжения, в качестве которого применяется отдельный блок, называемый инвертором. Матрица CCD состоит из приборов с зарядовой связью, которые представляют собой светочувствительные элементы, способные накапливать электрический заряд, пропорциональный уровню освещенности. Отраженный от сканируемого изображения свет проецируется на перемещающийся над изображением вместе с кареткой приемный элемент. Отраженный свет предварительно фокусируется с помощью оптического объектива и системы зеркал и попадает на светочувствительные элементы (CCD), которые преобразуют падающий на них свет в электрический сигнал. Этот сигнал затем усиливается и поступает на вход АЦП. Матрица CCD не прекращает работать все то время, пока лафет со сканирующей кареткой, приводимый шаговым электродвигателем, совершает путь от начала планшета до его конца. За один шаг перемещения каретки матрица целиком захватывает горизонтальную линию планшета, которая называется линией растра. По истечении времени, достаточного для обработки одной такой линии, каретка перемещается на небольшой шаг, и наступает очередь для сканирования следующей линии изображения. При этом число шагов каретки на дюйм ее перемещения по вертикали называется механическим разрешение сканера. Сканеры, в которых используется матрица CCD, имеют большую глубину резкости, высокую разрешающую способность (порядка 3200 dpi) и, как следствие, высокое качество сканирования.

АЦП – это устройство, которое преобразует аналоговый сигнал в цифровую форму, причем значение аналогового сигнала на входе АЦП соответствует этому значению на его выходе, но выраженному в двоичной системе счисления с соответствующим числом разрядов. Разрядность (число бит) АЦП характеризует точность преобразования аналогового сигнала и в основном определяет такую важную характеристику сканера, как глубина цвета. Разрядность современных АЦП, используемых в недорогих планшетных сканерах, варьируется в пределах от 24 до 48 бит.

Блок управления сканера предназначен для автономного управления работой сканера начинающими пользователями. Опытные пользователи управляют сканером с помощью ПК, а необходимые настройки перед сканированием задаются в пользовательском окне управляющей программы.

МП предназначен для согласованного управления всеми компонентами сканера и формирования данных об изображении для передачи персональному компьютеру. В некоторых моделях сканеров на МП возлагаются также функции контроллера интерфейса. Список программных инструкций для МП хранится в микросхеме постоянной памяти. Данные в эту микросхему записываются производителем сканера на этапе производства.

Протяжный механизм предназначен для перемещения сканирующей каретки и представляет собой зубчатый протяжной ремень, который крепится к каретке. Протяжной ремень приводится в движение электрическим шаговым двигателем. Шаговый двигатель через протяжной ремень перемещает каретку на строго определенное расстояние.

В качестве дополнительных устройств для сканера могут использоваться адаптеры для сканирования прозрачных пленок, слайдов, негативов (слайд-адаптеры) и автоподатчики документов.

Подключается планшетный сканер к системному блоку ПК посредством электрического кабеля и соответствующего порта. В качестве таких портов в настоящее время широко используются порты: USB (интерфейс Universal Serial Bus) и FireWire (IEEE1394, последовательный высокоскоростной интерфейс ввода-вывода).

К основным характеристикам сканеров относятся разрешение (оптическое и механическое), глубина цвета, тип матрицы и т. д.

Разрешение – важнейшая характеристика сканера. Оно измеряется в пикселях (точках) на дюйм – dpi (dotper inch – точек на дюйм) и показывает, сколько точек и линий (число шагов каретки) может различить сканер на отрезке длиной в один дюйм (25,4 мм). Разрешение записывается в виде произведения двух чисел, например 1200 х 2400 dpi. Первое число соответствует оптическому разрешению, второе – механическому.

Другая основная характеристика сканера – глубина цвета, измеряемая в битах. Чем больше эта величина, тем достовернее сканер может передать цвет каждой точки сканируемого изображения. У большинства планшетных сканеров глубина цвета, как правило, находится в пределах от 24 до 48 бит.

Рассмотрим в качестве примера запись в прайс-листе компании, торгующей сканерами:

BenQ 5250C (А4 Color, plain, 1200*2400dpi, USB2.0).

Представим данную запись в развернутом виде:

BenQ – компания-производитель;

5250C – модель сканера;

А4 Color – формат сканируемых листов А4 (210 х 297 мм), сканер цветной;

plain – сканер относится к сканерам планшетного типа;

1200*2400 dpi – разрешение сканера (оптическое разрешение равно 1200 dpi, механическое – 2400 dpi);

USB 2.0 – сканер подключается к порту USB 2.0 системного блока компьютера с помощью кабеля, входящего в комплект поставки.

Кроме того, данный сканер имеет глубину цвета 48 бит, светочувствительную матрицу CIS, пять кнопок быстрого доступа (для автономного управления) и габаритные размеры 412 х 258 х 38 мм.

После подключения сканера к системному блоку необходимо установить на компьютер программное обеспечение (ПО), которое входит в комплект поставки сканера. ПО для сканера можно условно разделить на две группы – системное и прикладное.

К системному ПО относят драйвер (от англ. driver – управляющая программа). С помощью этой программы обеспечивается связь между операционной системой ПК и сканером, осуществляется его управление и обмен данными.

К прикладному ПО относятся программы для обработки (корректировки, ретуширования и пр.) графических изображений и программы для машинописных и рукописных текстов, которые называются также программами распознавания текста или символов, – СО? – приложение (от англ. Optical Character Recognition – оптическое распознавание символов).

К программам для обработки графических изображений можно отнести: Adobe Photoshop, Adobe Photoshop Elements, Micrografx Picture Publisher и т. д. Например, для сканера BenQ 5250C в качестве прикладных программ для обработки изображений прилагаются программы Adobe AcrobatReader, Arcsoft PhotoBase, Arcsoft Photolmpression, Arcsoft PhotoPrinter, Photo Family software и пр.

Как уже отмечалось, с помощью сканера можно вводить в ПК и текстовые документы. Однако при этом тестовый документ преобразуется в файл графического формата, т. е. представляется в виде изображения, который затем необходимо преобразовать в текстовый формат с помощью специальных компьютерных программ – программ распознавания текстов (OCR). Для распознавания текста (символов), напечатанного на русском языке, в настоящее время широко используются компьютерные программы Finereader компании Abbyy Software House и CuneiForm компании Cognitive Technologies.

В настоящее время крупнейшими мировыми производителями сканеров являются компании Canon, Mustek, Epson, BenQ и т. д.

Для получения графической информации в виде фотоснимков и видеоизображений, непосредственно представленной в цифровой (компьютерной) форме, и последующего ввода данной информации в ПК используются цифровые фотоаппараты и цифровые видеокамеры.

Современные цифровые фотоаппараты предназначены в основном для получения неподвижных изображений, т. е. оцифрованных фотографических снимков, сохраненных в запоминающем устройстве фотоаппарата в виде графических файлов, которые после ввода в ПК могут быть подвергнуты соответствующей компьютерной обработке, сохранены в памяти компьютера или отпечатаны на фотобумаге при помощи принтера.

Конструктивно современные цифровые фотоаппараты состоят из следующих основных компонентов: корпуса, оптической системы (объектива) с электронно-механическим затвором, светочувствительной матрицы, электронного блока, кнопок управления, механических элементов, жидкокристаллического цветного дисплея, разъемов (слотов) для подключения внешних карт памяти и порта для подключения кабеля USB. Принцип работы цифрового фотоаппарата основан на проецировании изображения от фотографируемого объекта на светочувствительную матрицу с последующим его преобразованием в цифровую форму. После открытия затвора фотоаппарата отраженные от объекта световые лучи проходят через оптическую систему и попадают на светочувствительные элементы матрицы, на которых фокусируется изображение. Фокусировка, глубина диафрагмы (глубина резкости изображения) и выдержка (экспозиция – время открытия затвора, т. е. время проецирования изображения на светочувствительную матрицу) устанавливаются в цифровых фотоаппаратах автоматически или с помощью соответствующих пунктов меню настройки. Светочувствительные элементы матрицы, на которых фокусируется изображение от объекта, накапливают заряд, пропорциональный уровню освещенности. После закрытия затвора электронный блок считывает сигнал с каждого элемента, усиливает его, преобразует в цифровую форму и сохраняет его в виде графического файла в запоминающем устройстве электронного блока. Для получения цветного изображения объекта каждый светочувствительный элемент матрицы должен состоять из трех (по одному на каждый из основных) цветов – R, G, В. Однако применение таких матриц приводит к значительному удорожанию цифрового фотоаппарата в целом, поэтому для производства относительно недорогих цифровых фотоаппаратов используется матрица, в которой светочувствительные элементы организованы в так называемый цветовой массив Байера. В этом массиве половина светочувствительных элементов, расположенных в шахматном порядке, отвечает за зеленый цвет, к которому человеческий глаз наиболее чувствителен, а остальные светочувствительные элементы (по 25 %) считывают соответственно красный и синий цвета. Значения двух других цветов в каждой точке изображения интерполируются (определяются) в электронном блоке на основе существующих математических методов интерполяции.

Важнейшими компонентами цифрового фотоаппарата, определяющими качество его фотоснимков, являются оптическая система и светочувствительная матрица. В качестве светочувствительной матрицы в настоящее время используется CCD-матрица (Charge Coupled Device – прибор с зарядовой связью). Принцип действия ее в следующем: матрица состоит из массива прямоугольных светочувствительных элементов – конденсаторов, накапливающих электрический заряд под воздействием падающего на них света. После того как затвор фотоаппарата закрывается, с матрицы происходит считывание зарядов (последовательно, строка за строкой) и запись их значений в специальную считывающую строку, из которой последние, усиленные и преобразованные в цифровую форму, переносятся в память фотоаппарата. В процессе считывания зарядов CCD-матрица «очищается», и к моменту окончания цикла считывания она готова к записи следующего снимка. Именно возможность построчного считывания со светочувствительных элементов накопленных во время съемки зарядов и отсутствие необходимости в дополнительной «очистке» матрицы и сделали в итоге технологию CCD ведущей при производстве цифровых фотоаппаратов.

Основными характеристиками матрицы являются ее разрешение и размер. Разрешение матрицы измеряется в мегапикселях (Мрх – Mega pixels). Впервые этот термин был введен компанией Kodak в 1986 г., когда она создала промышленный образец CCD – матрицы с разрешением 1,4 Мрх.

Разрешение матрицы определяет количество ее светочувствительных элементов. Например, если указывается разрешающая способность матрицы равной 5 Мрх, то это означает, что матрица имеет количество рабочих светочувствительных элементов, равное 5 000 000 (пять миллионов), что соответствует разрешению изображения, равному 2560 х 1920, которое может быть получено на экране монитора компьютера при отношении сторон снимка снимка, равном 4: 3. Разрешение матрицы – важная характеристика, влияющая на качество получаемых снимков. Например, если вы хотите получить качественный снимок 10 х 15 см и отпечатать его на принтере, т. е. обеспечить разрешающую способность при печати на принтере не менее 300 dpi (такое разрешение при печати в фотолабораториях считается приемлемым для получения качественного снимка), или 120 точек на 1 см, то разрешение самой матрицы цифрового фотоаппарата должно быть не менее 2,16 Мрх (120 х 15 х 120 х 10 = 2160000 точек). Матрица с более высоким разрешением улучшит качество снимка за счет прорисовки более мелких деталей изображения, но определяющую роль здесь будет играть все же качество оптической системы цифрового фотоаппарата. Дальнейшее увеличение разрешения приводит к возрастанию цифровых шумов на выходе АЦП электронного блока, что особенно сильно проявляется в условиях слабой освещенности фотографируемого объекта, и как следствие – к ухудшению качества снимка. Один из способов уменьшения влияния шумов на качество снимка – увеличение размера матрицы. По этой причине размер светочувствительной матрицы также является важной характеристикой, влияющей на качество снимка.

Размер матрицы – это условная характеристика, она записывается в виде числа, которому соответствуют определенные геометрические размеры (размер по горизонтали и вертикали) матрицы, например 1/2,5", 1/2", 1/1,8" и т. д. В табл. 5.3 приведены соответствия между условным размером и реальным размером некоторых выпускаемых светочувствительных матриц.

Таблица 5.3

Между разрешением и размером матрицы существует зависимость: при постоянном размере матрицы шумы будут возрастать с увеличением ее разрешения, и наоборот, т. е. при постоянном разрешении матрицы шумы будут уменьшаться при увеличении ее размера. Однако увеличение размера матрицы приводит к повышению требований к оптической системе и, как следствие, – к удорожанию цифрового фотоаппарата в целом. Поэтому производители ищут компромисс между разрешением и размером матрицы.

Графическая информация о фотографируемом объекте после соответствующей обработки в электронном блоке (аналогово-цифрового преобразования, интерполяции, сжатия в стандарте JPEG и т. д.) сохраняется в запоминающем устройстве (памяти) цифрового фотоаппарата в виде графического файла. Формат графического файла изначально предполагает его сжатие с целью уменьшения информационного объема. Для сжатия исходного графического файла в цифровых фотоаппаратах используется алгоритм сжатия JPEG (Joint Photographic Experts Group – объединенная группа экспертов по фотографии), после которого файл имеет расширение *.jpg и уже в таком формате переносится в компьютер и может быть сохранен в его памяти. Информационный объем графического файла (одного кадра) зависит от разрешения матрицы цифрового фотоаппарата и алгоритма сжатия и в настоящее время в среднем равен 1 Мбайт.

Память в цифровом фотоаппарате подразделяется на внутреннюю (встроенную) и внешнюю. Встроенной памяти, как правило, недостаточно (ее объем зависит от модели фотоаппарата и в среднем для любительских фотоаппаратов варьируется в пределах от 16 до 32 Мбайт), по этой причине используют внешнюю память (карту памяти), объем которой может значительно превышать объем встроенной памяти (на порядок и выше). В настоящее время в основном используют две карты памяти – SD (Secure Digital) и ММС (MultiMediaCard). Данные карты приобретаются отдельно и устанавливаются в разъем (слот), расположенный в корпусе фотоаппарата.

Просмотр установленных параметров съемки в меню, наведение фотоаппарата на объект и просмотр отснятого кадра осуществляется с помощью жидкокристаллического цветного дисплея.

Для переноса полученного графического файла на компьютер с целью его предварительного просмотра, корректировки с помощью соответствующих компьютерных программ (например, Video Studio, Photo Explorer, Photo Express и т. д.) и последующей печати на принтере используется кабель, который подключается к порту USB системного блока ПК.

Так же, как и в предыдущих случаях, рассмотрим в качестве примера запись в прайс-листе компании, торгующей цифровыми фотоаппаратами:

Kodak EasyShare LS753 (5.0Мрх, 36-100mm, 2.8х, F3.0–4.9, JPG, 32Mb + 0Mb SD/MMC, 1.8", USB, Li-Ion).

Представим данную запись в развернутом виде:

Kodak – компания-производитель;

Easy Share LS753 – модель фотоаппарата;

5.0 Мрх – разрешение матрицы;

36-100 mm – фокусное расстояние объектива;

2.8х – диапазон изменения фокусного расстояния (оптический zoom, или оптический 2.8х-трансфокатор);

F3.0–4.9 – светосила объектива;

JPG – формат сжатия;

32Mb + 0Mb SD/MMC – встроенная память 32 Мбайт, слоты для карт памяти SD/MMC;

1.8" – размер жидкокристаллического дисплея (46 мм);

USB – порт подключения (интерфейс);

Li-Ion – источник электрического питания (аккумулятор).

В настоящее время крупнейшими мировыми производителями цифровых фотоаппаратов являются компании Canon, Kodak, Nikon, Panasonic и т. д.

Для получения подвижных графических изображений (видеоизображений) в цифровом виде и последующего их ввода в компьютер используются цифровые фотоаппараты, способные работать в режиме видеосъемки, и цифровые видеокамеры.

Многие современные любительские цифровые фотоаппараты имеют режим видеосъемки, который позволяет снимать видеосюжеты со скоростью несколько десятков кадров в секунду (например, 30 кадров в секунду). Полученный при этом видеофайл и сохраненный в памяти цифрового фотоаппарата в соответствующем формате (например, AVI, MOV, MPEG и т. д., что зависит от конкретной модели цифрового фотоаппарата) может быть воспроизведен на экране дисплея или перенесен на компьютер. При открытии (запуске) графического файла на экране дисплея фотоаппарата или компьютера проходит последовательность кадров (неподвижных графических изображений) с определенной скоростью, которая из-за инерционности человеческого глаза воспринимается как видеоизображение. Для получения более качественного видеоизображения в цифровой форме используются цифровые видеокамеры, в которых используются более качественная оптическая система и светочувствительная матрица, а также запоминающее устройство, имеющее больший объем памяти. Цифровые видеокамеры, также как и цифровые фотоаппараты, делятся на любительские и профессиональные, которые различаются по техническим и эксплуатационным характеристикам. У профессиональных цифровых фотоаппаратов и видеокамер они значительно выше. Любительские цифровые видеокамеры в основном имеют два формата: MiniDV, при котором запись производится на миниатюрную магнитную кассету, и DVD, при котором запись производится на оптический диск.

В настоящее время ведущими мировыми производителями цифровых видеокамер являются компании Sony, Panasonic, Philips, Canon и NC.

Для ввода звуковой информации в ПК используется микрофон, который подключается с помощью электрического кабеля к звуковой карте (звуковому контроллеру). Звуковая карта устанавливается в один из слотов (разъемов) на системной плате ПК. Микрофон преобразует звуковой сигнал в электрический, который затем поступает в звуковую карту. Звуковая карта принимает электрический сигнал от микрофона, преобразует его из аналоговой формы в цифровую и сохраняет звуковую информацию в виде файла, формат которого определяется компьютерной программой обработки звуковой информации (например, WMA – Windows Media Audio). Качество оцифрованной звуковой информации определяется параметрами АЦП звуковой карты: ее разрядностью (16–24 бит) и частотой дискретизации (44,1; 48; 96 или 192 кГц). Кроме того, современные звуковые карты имеют частотный диапазон воспроизводимого звука от 20 Гц до 20 КГц. Для ввода звуковой информации в ПК используются в основном электростатические (конденсаторные) микрофоны.

Из книги Защита вашего компьютера автора Яремчук Сергей Акимович

4.2. Персональный брандмауэр Outpost Firewall Начало Outpost Firewall было положено утилитой обнаружения хакерских атак Jammer, которая быстро стала популярной. Причина ее популярности оказалась банальной. Одна зарубежная правительственная компания использовала троян для слежения за

Из книги Работа на ноутбуке автора Садовский Алексей

Устройства ввода Начнем с мыши. В ноутбуках чаще всего для управления указателем используется сенсорная панель (известная также под названием «тачпад»), расположенная под клавиатурой (рис. 3.6). Когда вы водите по ней пальцем, указатель перемещается по экрану. Удобство

Из книги Железо ПК [Популярный самоучитель] автора Пташинский Владимир

Глава 8 Устройства ввода информации Профессор, введите мне, пожалуйста, два кубика молекулярной физики, один – векторной алгебры и пару миллиграммов спецкурса. О методах обучения в будущем Продолжая наш увлекательный разговор о периферийных устройствах, нельзя не

Из книги Win2K FAQ (v. 6.0) автора Шашков Алексей

(3.36) Диспетчер устройств показывает не все устройства:(. Как увидеть все установленные устройства (включая даже не подключенные в данный момент)? Установите в Диспетчере устройств опцию View/Show hidden devices, затем откройте окно консоли и выполните в нем следующие команды:set

Из книги Самоучитель работы на компьютере автора Колисниченко Денис Николаевич

11.1. Установка нового устройства в ваш компьютер В этом разделе мы поговорим о физическом подключении устройства к компьютеру. Любой пользователь рано или поздно столкнется с установкой новых устройств в свой компьютер. Вот основные правила подключения нового

Из книги Информатика: аппаратные средства персонального компьютера автора Яшин Владимир Николаевич

Из книги Сетевые средства Linux автора Смит Родерик В.

Устройства с широкой полосой пропускания и устройства, обеспечивающие связь на большой дальности Термин "устройства с широкой полосой пропускания" имеет несколько значений. Во-первых, этот термин обозначает устройства, позволяющие одновременно передавать различные

Из книги Самоучитель Skype. Бесплатная связь через Интернет автора Яковлева Е. С.

Персональный компьютер, монитор Персональный компьютер (ПК) представляет собой набор электронных компонентов, управляемых центральным процессорным устройством по заданной программе. Большинством людей компьютеры воспринимаются как умные и быстрые мыслящие

Из книги Яндекс для всех автора Абрамзон М. Г.

4.3. Персональный поиск Насколько проще найти информацию на своем компьютере, чем в Интернете? Хорошо, если у вас все организовано так, как может быть в идеале - все файлы разложены по папкам, для которых проработана структура, каждый файл имеет вполне распознаваемое

Из книги Самоучитель работы на Macintosh автора Скрылина Софья

4.4.7. Сохранение информации на ваш компьютер Время от времени приходится скачивать различные материалы из Интернета: фотографии, файлы дистрибутивов, фильмов, текст со страницы, ссылки на интернет-ресурсы и т. д. Для скачивания больших объемов информации используются

Из книги Цифровой журнал «Компьютерра» № 159 (full) автора Журнал «Компьютерра»

Персональный компьютер будет стоить меньше 100 долларов и уместится в кармане? Андрей Письменный Опубликовано 08 февраля 2013В начале 2012 года по интернету стремительно разошлась ссылка на простенькую веб-страничку, которая сообщала о том, что Дэвид Брейбен, один из авторов

Из книги Защита от хакеров корпоративных сетей автора Автор неизвестен

Вскрытие устройства: атаки на корпус устройства и его механическую часть Наиболее общей целью анализа корпуса устройства и его механической части является получение исчерпывающей информации об устройстве и возможности исследования его внутренней части. Агрессивный

Из книги Готовимся к пенсии: осваиваем Интернет автора Ахметзянова Валентина Александровна

Персональный сайт Ну, тут уж и ежу понятно, что создают такие сайты для себя такие же люди, как и мы с вами. Так что и тематика, и наполнение, и оформление сайта - все зависит от умения автора, его возможностей и воображения. Тут уж никаких границ не существует. Рис. П1.4.

Из книги Linux и все, все, все... Статьи и колонки в LinuxFormat, 2006-2013 автора Федорчук Алексей Викторович

Пердем – персональный демон LinuxFormat #112 (декабрь 2008)Все знают, что пермаш – это персональная машина, пердач – персональная дача, перпен – это... нет, не то, что вы подумали, а персональная пенсия, и так далее. А вот что такое пердем? Это – персональный демон, система PC-BSD,

Устройства ввода

Манипуляторы

Манипуляторы являются координатными устройствами ввода, так как движение манипулятора преобразуется в изменение текущих координат экрана. Эти устройства позволяют ускорить работу с компьютерными объектами и обеспечивают более удобное управление ими.

Мышь

Широкое использование графического интерфейса привело к появлению манипулятора «мышь».

По способу считывания информации их можно классифицировать на:

  • механические;
  • оптико-механические;
  • оптические.

    На нижней поверхности механической мыши имеется шарик. Перемещение мыши по ровной поверхности приводит к вращению шарика, который взаимодействует с датчиками внутри корпуса мыши. В результате вырабатывается сигнал, который заставляет перемещаться указатель мыши на экране монитора.

    Оптическая мышь имет красный светодиод для подсветки и миниатюрную видеокамеру, которая делает снимки поверхности под ней (от 1500 до 6000 кадров в секунду). Специальный процессор сравнивает два последовательных кадра и вычисляет величину и направление смещения.

    На верхней поверхности мыши обычно расположены 2 кнопки. Нажатие на кнопку мыши компьютер воспринимает как указание на выполнение некоторого заданного действия.В настоящее время появились мыши с колесиком, предназначенным для прокрутки изображений и текстов, не умещающихся целиком на экране.
    Использование мыши позволяет более быстро и удобно управлять работой различных программ.

    Качество мыши определяется ее разрешающей способностью , которая измеряется количеством точек на дюйм - dpi (dot per inch).
    От этой характеристики зависит, насколько точно указатель мыши будет передвигаться по экрану.
    Для мышей среднего класса разрешение составляет 400-800 dpi. Это означает, что при перемещении мыши на 1 дюйм (1 дюйм=2,54 см) указатель мыши на экране переместится на 400-800 точек

    Разные типы мыши также отличаются друг от друга способом соединения с компьютером:

  • проводные - присоединяемые с помощью кабеля;
  • беспроводные , или «бесхвостые» мыши - соединение с компьютером обеспечивается инфракрасным сигналом, который воспринимается специальным портом.
  • Одной из горячих тем минувшего года стала технология бесконтактного ввода управляющих команд посредством естественных движений и жестов. Эксперты прочат подобным устройствам большое будущее, причем не только в сфере ПК и игровых приставок, но и в бытовой электронике.

    На первый взгляд может показаться, что смена технологий в области массовых устройств ввода происходит крайне медленно. И в этом, действительно, есть доля правды: пару лет тому назад мы отмечали 40-летие компьютерной мыши, а возраст клавиатур безо всякой натяжки можно назвать пенсионным. Другое дело, что за прошедшие десятилетия кардинально изменилась «начинка» этих устройств. Так, механические клавиатуры постепенно сменились полумеханическими, а затем - широко распространенными ныне пленочными. То же самое можно сказать и о манипуляторах типа мышь: в 80-е годы неуклюжая конструкция с двумя взаимно перпендикулярными роликами уступила место моделям с катающимся шариком, а в течение последней дюжины лет на наших столах безраздельно господствуют манипуляторы с оптическими датчиками различных конструкций. Тем не менее способ взаимодействия пользователя с графической оболочкой ОС компьютера посредством мыши и клавиатуры остался прежним: как и пару десятилетий тому назад, мы набираем текст, нажимая клавиши, и перемещаем курсор, двигая корпус мыши по столу.

    На рубеже веков обозначился новый вектор развития технологий взаимодействия пользователя с ПК и электронными устройствами. В обиход вошли карманные компьютеры (КПК) с сенсорными экранами. Следом за ними промелькнули планшетные ПК первого поколения, так и не сумевшие закрепиться на массовом рынке. А еще через несколько лет началось триумфальное шествие гаджетов с сенсорными экранами. Доля мобильных телефонов, смартфонов, портативных медиаплееров и прочих электронных устройств, оснащенных сенсорными экранами, год от года увеличивается. Растущая популярность этого решения стимулировала развитие соответствующих технологий: на смену резистивным панелям пришли проекционно­емкостные, благодаря чему значительно повысились точность и удобство работы. Апофеозом «сенсорной лихорадки» стал бум планшетов. Однако в сегменте настольных и портативных ПК сенсорные экраны так и не смогли составить серьезную конкуренцию традиционным устройствам ввода - клавиатурам и мышам. Ноутбуки­трансформеры и моноблоки не в счет: их доля ничтожна и предпосылок к изменению ситуации пока не наблюдается.

    Принципиально новое решение, которое способно в корне изменить процесс взаимодействия пользователя именно с ПК, было представлено в конце 2010 года и сразу же стало бестселлером. Проницательные читатели, наверное, уже догадались, что речь идет о контроллере Kinect, созданном в подразделении аппаратных средств корпорации Microsoft.

    Хит сезона

    Что же такое Kinect? Если охарактеризовать его предельно кратко, то это специализированное устройство ввода, предназначенное для управления работой приложений посредством движений, жестов и изменения позы.

    Аппаратное оснащение Kinect включает пару цифровых видеокамер, микрофон, дальномер и высокопроизводительный микропроцессор. Посредством видеокамер устройство в режиме реального времени отслеживает положение тела пользователя в пространстве. Изображение считывается с разрешением 640x480 и частотой 30 кадров в секунду.

    Каковы же принципиальные отличия Kinect от традиционно используемых устройств ввода? Во­первых, это бесконтактный манипулятор: пользователю не нужно нажимать кнопки, перемещать какие­либо органы управления или прикасаться к сенсорной поверхности. Во­вторых, он универсален. Традиционные игровые манипуляторы подразделяются на множество типов (геймпады, джойстики, рули и пр.), и конструкция каждого из них приспособлена для игр определенных жанров. Таким образом, владельцам ПК зачастую приходится приобретать несколько манипуляторов различных типов. В этом смысле Kinect является значительно более гибким решением: набор используемых жестов может варьироваться в зависимости от специфики запущенного приложения. Кроме того, отдавать команды посредством жестов и естественных движений тела во многих случаях гораздо проще, чем привыкать к расположению и особенностям реакции аппаратных органов управления.

    Работа по созданию Kinect шла на протяжении нескольких лет. Первая публичная демонстрация прототипа под кодовым названием project Natal состоялась летом 2009 года в ходе выставки Electronic Entertainment Expo (E3). А год спустя корпорация Microsoft представила на E3 уже полностью готовый к серийному производству образец этого контроллера, который впоследствии получил название Kinect.

    Контроллер Kinect позволяет управлять игровым процессом
    посредством различных жестов и движений тела

    Розничные продажи контроллера Kinect для игровой приставки XBox стартовали 4 ноября 2010 года. Всего за два месяца (с 4 ноября 2010-го по 3 января 2011 года) было продано более 8 млн контроллеров. Таким образом, среднесуточный объем продаж за этот период составил 133 333 штук. По оценкам редакторов «Книги рекордов Гиннесса», до Kinect ни одно бытовое электронное устройство не продавалось столь высокими темпами в течение первых 60 дней продаж, включая даже такие бестселлеры, как iPhone и iPad.

    Хотя первая модель Kinect создавалась исключительно для использования с приставками XBox, вскоре после начала продаж в Интернете появился созданный энтузиастами драйвер, позволяющий подключать этот контроллер к ПК. А в конце ноября минувшего года появилась информация о том, что Microsoft готовит к выпуску специальную модификацию Kinect, предназначенную для использования с ПК, функционирующими под управлением ОС Windows. Согласно предварительной информации, она поступит в продажу в феврале­марте этого года.

    По словам главы проекта Kinect для Windows Крейга Айслера (Craig Eisler), данная модификация будет подключаться к ПК по интерфейсу USB и получит новую прошивку, которая обеспечит стабильное распознавание жестов и движений пользователя, находящегося на расстоянии 40 см от устройства и далее (доступная в настоящее время версия для XBox эффективно работает на расстоянии 1,2-3,5 м). Как утверждает г­н Айслер, такие изменения позволят не только наилучшим образом адаптировать Kinect для работы с ПК, но и создать целый класс абсолютно новых приложений, управляемых посредством этого контроллера.

    В Microsoft уверены, что сфера применения Kinect на ПК не будет ограничена исключительно игровыми приложениями. Как считают разработчики, инновационный манипулятор пригодится для проведения интерактивных презентаций в офисах и учебных заведениях, позволит реализовать оригинальные интерфейсы для управления виртуальными музыкальными инструментами и решать множество других задач.

    Важным условием успешного продвижения Kinect на платформе Windows является своевременное появление достаточного большого количества программных продуктов, позволяющих максимально эффективно реализовать возможности новинки. В руководстве Microsoft это хорошо понимают. Корпорация уже объявила о запуске инвестиционной программы Kinect Accelerator, которая позволит привлечь большое количество независимых разработчиков ПО к созданию приложений для ПК, которые позволят раскрыть возможности Kinect, а также реализовать новые идеи по прикладному использованию этого контроллера. Проектам, вошедшим в десятку лучших, Microsoft обещает бесплатно предоставить комплект необходимых средств разработки, а также оказать финансовую помощь в размере 20 тыс. долл.

    В настоящее время в Microsoft уже вовсю идут работы не только над модификацией Kinect для Windows, но и над следующей версией этого контроллера для XBox, который пока фигурирует под названием Kinect 2. Дата анонса этого продукта неизвестна. Возможно, его прототип будет показан уже в январе на CES 2012, но не исключено, что Microsoft прибережет эту новинку для профильной выставки Е3.

    Согласно информации, опубликованной в конце прошлого года на ресурсе Eurogamer, благодаря применению светочувствительных сенсоров с более высоким разрешением новинка будет отличаться от устройства первого поколения гораздо более высокой точностью распознавания, что, в частности, позволит реализовать функцию чтения по губам. Кроме того, Kinect 2 будет способен отслеживать большее количество параметров, нежели контроллер первого поколения. Например, появится возможность определять направление взгляда пользователя и различать основные эмоции по выражению его лица и изменению тембра и модуляций голоса.

    Группа поддержки

    В течение нескольких месяцев после начала продаж Kinect сохранял статус уникального и единственного в своем роде продукта. Первый конкурент у него появился лишь осенью минувшего года, когда компания ASUS начала поставки контроллера Xtion Pro, разработанного в тесном сотрудничестве с израильской фирмой PrimeSense.

    Аппаратное оснащение Xtion Pro включает видеокамеру, дальномер и ИК-датчик. Глядя на фотографию, трудно не заметить внешнее сходство Xtion Pro с Kinect. Встроенная видеокамера позволяет считывать изображение с разрешением 320x240 либо 640x480 пикселов с частотой 60 и 30 кадров в секунду соответственно. По данным разработчиков, система способна уверенно считывать жесты на расстоянии от 0,8 до 3,5 м; угол обзора оптической системы составляет 58° по горизонтали и 45° по вертикали.

    Как и Kinect, контроллер Xtion Pro предназначен для управления графическим интерфейсом ОС и приложений при помощи различных жестов и изменения позы. Однако между ними есть и существенное различие: контроллер ASUS изначально создавался с расчетом на использование с ПК. Как и Microsoft, компания ASUS планирует оказывать поддержку разработчикам приложений (в первую очередь игр), которые позволят наиболее полно реализовать возможности контроллера Xtion Pro.

    В настоящее время развиваются и другие проекты. Так, в минувшем году бельгийская компания SoftKinetic представила собственную программную платформу iisu. Данное решение позволяет реализовать интерфейс для управления ПК и бытовой техникой при помощи жестов, считываемых стереоскопической видеокамерой. Одним из важных конкурентных преимуществ iisu являются невысокие требования к вычислительным ресурсам аппаратной части, благодаря чему данное решение наилучшим образом подходит для внедрения в многофункциональных телевизорах (SmartTV) и ТВ-приставках.

    Год назад в ходе выставки CES 2011 компания SoftKinetic продемонстрировала прототип контроллера на базе технологии iisu, построенный на аппаратной платформе Intel Atom CE4100. Среди возможностей этого устройства - управление веб­браузером, видеоконференциями и игровыми приложениями. Кроме того, данный контроллер может заменить пульт ДУ, позволяя посредством простых и естественных жестов управлять телевизором и другой бытовой техникой.

    В ходе мероприятия Games Developer Conference, проходившего в марте, компания SoftKinetic представила свободно распространяемую версию iisu 2.8. Как отметил главный стратег этой компании Эрик Кржесло (Eric Krzeslo), многие разработчики заинтересовались данным решением. Новейшие достижения SoftKinetic в области создания бесконтактных манипуляторов были представлены осенью минувшего года в ходе крупных международных форумов (в частности, IBC 2011 и IDF 2011). А на проходившей в начале ноября конференции Korea Games Conference компания анонсировала открытую бета-версию iisu 3.0, которая поможет разработчикам игровых приложений реализовать поддержку функций распознавания естественных жестов в своих продуктах.

    Заключение

    Итак, в настоящее время производители располагают вполне зрелой технологией оптического распознавания жестов, пригодной для использования в массовых продуктах. В свою очередь, многие пользователи проявляют интерес к манипуляторам на базе этой технологии и готовы голосовать за них своим кошельком, что убедительно подтверждает беспрецедентный успех Kinect. Однако если говорить о роли подобных контроллеров применительно к ПК, то хотя они и способны заменить целый «зоопарк» игровых манипуляторов, но до реальной конкуренции с мышью и клавиатурой им еще очень далеко.

    Бесспорно, потенциал технологии распознавания жестов огромен, однако его еще предстоит реализовать. Пояснить эту мысль можно на примере смартфонов. Если разобраться, то одной из главных причин их нынешней популярности является не факт наличия установленной поверх дисплея сенсорной поверхности, а реализация качественно нового уровня взаимодействия пользователя с устройством. Залогом успеха стала в корне иная концепция графического интерфейса, который изначально создавался с расчетом на использование сенсорных экранов. С внедрением технологии бесконтактного распознавания жестов дело обстоит точно так же. Расширение сферы их применения напрямую зависит от того, удастся ли разработчикам ПО и операционных систем создать новую концепцию пользовательского интерфейса, которая обеспечит максимально удобное и эффективное управление жестами и движениями. И до тех пор, пока эта задача не решена, вряд ли имеет смысл рассматривать бесконтактные контроллеры в качестве прямых конкурентов традиционным устройствам ввода для ПК.

    Лучшие статьи по теме