Гид компьютерного мира - Информационный портал
  • Главная
  • Windows
  • Стабилизатор тока с малым падением. Стабилизатор напряжения на мосфете

Стабилизатор тока с малым падением. Стабилизатор напряжения на мосфете

Вся современная радиоэлектронная аппаратура построена на элементах, чувствительных к питающему электричеству. От него зависит не только правильное функционирование, но и работоспособность схем в целом. Поэтому в первую очередь электронные устройства снабжают фиксированными стабилизаторами с малым падением напряжения. Они выполнены в виде интегральных микросхем, которые выпускают многие производители по всему миру.

Что такое стабилизатор напряжения с малым падением напряжения?

Под стабилизатором напряжения (СН) понимают такое устройство, основная задача которого состоит в поддержании на определенном неизменном уровне напряжения на нагрузке. Любой стабилизатор имеет определенную точность выдачи параметра, которая обусловлена типом схемы и компонентами, входящими в нее.

Внутренне СН выглядит подобно замкнутой системе, где в автоматическом режиме напряжение на выходе подстраивается пропорционально эталонному (опорному), которое генерирует специальный источник. Этот тип стабилизаторов именуют компенсационным. Регулирующим элементом (РЭ) в этом случае выступает транзистор - биполярник или полевик.

Элемент регулирования напряжения может работать в двух разных режимах (определяется схемой построения):

  • активном;
  • ключевом.

Первый режим подразумевает непрерывную работу РЭ, второй - работу в импульсном режиме.

Где применяют фиксированный стабилизатор?

Радиоэлектронная аппаратура современного поколения отличается мобильностью в глобальном масштабе. Системы питания устройств построены на использовании в основном химических источников тока. Задача разработчиков в этом случае состоит в получении стабилизаторов с небольшими габаритными параметрами и как можно меньшими потерями электричества на них.

Современные СН применяются в следующих системах:

  • средства мобильной связи;
  • компьютеры переносного типа;
  • элементы питания микроконтроллеров;
  • автономно работающие камеры слежения;
  • автономные охранные системы и датчики.

Для решения вопросов питания стационарной электроники применяют стабилизаторы напряжения с малым падением напряжения в корпусе с тремя выводами типа КТ (КТ-26, КТ-28-2 и др.). Их используют для создания простых схем:

  • зарядных устройств;
  • блоков питания бытовой электротехники;
  • измерительной аппаратуры;
  • систем связи;
  • спецоборудования.

Какими бывают СН фиксированного типа?

Все интегральные стабилизаторы (в состав которых входят и фиксированные) делят на две основных группы:

  • Стабилизаторы с минимально малым падением напряжения гибридного исполнения (ГИСН).
  • Микросхемы полупроводниковые (ИСН).

СН первой группы выполняют на интегральных микросхемах и полупроводниковых элементах бескорпусного типа. Все компоненты схемы размещают на подложке из диэлектрика, куда методом нанесения толстых или тонких пленок добавляют соединительные проводники и резисторы, а также элементы дискретные - переменные сопротивления, конденсаторы и др.

Конструктивно микросхемы представляют законченные устройства, выходное напряжение которых фиксировано. Это обычно стабилизаторы с малым падением напряжения на 5 вольт и до 15 В. Более мощные системы построены на мощных транзисторах бескорпусных и схеме управления (маломощной) на основе пленок. Схема может пропускать токи до 5 ампер.

ИСН микросхемы выполняют на одном кристалле, потому они имеют маленькие размеры и массу. По сравнению с предыдущими микросхемами они более надежны и дешевле в изготовлении, хотя по параметрам уступают ГИСН.

Линейные СН с тремя выводами относятся к ИСН. Если взять серию L78 или L79 (для положительных и отрицательных напряжений), то они делятся на микросхемы со:

  • Слабым током на выходе около 0.1 А (L78L**).
  • Средним значением тока, в районе 0.5 А (L78M**).
  • Сильноточные до 1.5 А (L78).

Принцип работы линейного стабилизатора с малым падением напряжения

Типовая структура стабилизатора состоит из:

  • Источника напряжения опорного.
  • Преобразователя (усилителя) сигнала ошибки.
  • Делителя сигнала и элемента регулирующего, собранных на двух резисторах.

Так как величина напряжения на выходе напрямую зависит от сопротивлений R1 и R2, то последние встраивают в микросхему и получается СН с фиксированным выходным напряжением.

Работа стабилизатора напряжения с малым падением напряжения основана на процессе сравнивания напряжения опорного с тем, которое поступает на выход. В зависимости от уровня несоответствия этих двух показателей усилитель ошибки воздействует на затвор силового транзистора на выходе, прикрывая либо открывая его переход. Таким образом, фактический уровень электричества на выходе стабилизатора будет мало отличаться от заявленного номинального.

Также в схеме присутствуют датчики защиты от перегрева и перегрузочных токов. Под воздействием этих датчиков у выходного транзистора полностью перекрывается канал, и он перестает пропускать ток. В режиме отключения микросхема потребляет всего 50 микроампер.

Схемы включения стабилизатора с малым падением напряжения

Интегральная микросхема-стабилизатор удобна тем, что имеет внутри все необходимые элементы. Установка ее на плату требует включения лишь фильтрующих конденсаторов. Последние призваны убрать помехи, приходящие от источника тока и нагрузки, как видно на рисунке.

Касательно СН серии 78xx и использовании танталовых либо керамических конденсаторов шунтирования входа и выхода, емкость последних должна быть в пределах до 2 мкФ (вход) и 1 мкФ (выход) при любых допустимых значениях напряжения и тока. Если применять алюминиевые конденсаторы, то их номинал не должен быть ниже 10 мкФ. Подключать элементы следует максимально близко к выводам микросхемы.

В случае когда нет в наличии стабилизатора напряжения с малым падением напряжения нужного номинала, можно увеличить номинал СН с меньшего на больший. За счет поднятия уровня электричества на общем выводе добиваются прироста его на такую же величину на нагрузке, как показано на схеме.

Преимущества и недостатки линейных и импульсных стабилизаторов

Интегральные микросхемы непрерывного действия (СН) имеют следующие преимущества:

  1. Реализованы в одном корпусе небольшого размера, что позволяет эффективно располагать их на рабочем пространстве печатной платы.
  2. Не требуют установки дополнительных регулирующих элементов.
  3. Обеспечивают хорошую стабилизацию выходного параметра.

К недостаткам можно отнести низкий КПД, не превышающий 60%, связанный с падением напряжения на встроенном регулирующем элементе. При большой мощности микросхемы необходимо применять радиатор охлаждения кристалла.

Более производительными считаются с малым падением напряжения на полевике, КПД которых приблизительно на уровне 85%. Достигается это благодаря режиму работы элемента регулирующего, при котором ток через него проходит импульсами.

К недостаткам схемы импульсного СН можно отнести:

  1. Сложность схематического исполнения.
  2. Наличие помех импульсного характера.
  3. Малую стабильность выходного параметра.

Некоторые схемы с использованием линейного стабилизатора напряжения

Кроме целевого использования микросхем в качестве СН, можно расширить область их применения. Некоторые варианты таких схем на базе интегральной микросхемы L7805.

Включение стабилизаторов в параллельном режиме

Чтобы увеличить ток нагрузки, СН включают параллельно друг к другу. Для обеспечения работоспособности такой схемы дополнительно в нее устанавливают резистор небольшого номинала между нагрузкой и выходом стабилизатора.

Стабилизатор тока на базе СН

Есть нагрузки, питание которых необходимо осуществлять постоянным (стабильным) током, например, светодиодная цепочка.

Схема регулирования оборотов вентилятора в компьютере

Регулятор этого типа построен таким образом, что при первоначальном включении на куллер поступает все 12 В (для его раскрутки). Далее по окончании заряда конденсатора C1 переменным резистором R2 можно будет регулировать величину напряжения.

Заключение

Собирая схему с применением стабилизатора напряжения с малым падением напряжения своими руками, важно учитывать, что некоторые типы микросхем (построенные на полевых транзисторах) нельзя паять обычным паяльником непосредственно от сети 220 В без заземления корпуса. Их статическое электричество может вывести электронный элемент из строя!

Порой в радиолюбительской практике возникает необходимость в стабилизаторе с малым падением напряжения на регулирующем элементе (1,5-2В). Это может быть вызвано недостаточным напряжением на вторичной обмотке трансформатора, габаритными ограничениями, когда корпус не вмещает радиатор необходимого размера, соображениями экономичности устройства и т.д.

И если выбор микросхем для построения «обычных» стабилизаторов достаточно широк (типа LM317 , 78XX и т.п.), то микросхемы для построения Low-Drop стабилизаторов обычно не всем доступны. Поэтому несложная схема на доступных компонентах может быть весьма актуальна.

Представляю схему, которой сам пользовался много лет. За это время схема показала надёжную, стабильную работу. Доступные компоненты и простота настройки позволят без трудностей повторить конструкцию даже начинающим радиолюбителям.

увеличение по клику

Схема напоминает довольно стандартный параметрический стабилизатор , который дополнен ГСТ (генератором стабильного тока) для управления током базы регулирующего транзистора, за счёт чего и удалось получить низкое падение напряжения .

Схема рассчитана на выходное напряжение 5В (выставляется резистором R4) и ток нагрузки 200мА. Если требуется получить больший ток, то вместо T3 следует применить составной транзистор .

При необходимости получить большее выходное напряжение придётся пересчитать значения резисторов.

В случае отсутствия транзисторных сборок можно использовать дискретные транзисторы. В моём варианте вместо сборки КР198НТ5 использовалось два подобранных транзистора КТ361. Сборку КР159НТ1 можно заменить двумя транзисторами КТ315, подбор которых не требуется.

Так как информации в Интернете по отечественным компонентам практически нет, привожу для справки цоколёвку транзисторных сборок.

Одним из важнейших свойств стабилизаторов питания является наименьшее допускаемое напряжение между выходом и входом стабилизатора при наибольшем нагрузочном токе. Он выдает информацию, при какой наименьшей разности напряжений параметры прибора находятся в нормальном состоянии.

Одним способом повышения КПД линейной настройки является снижение до наименьшего значения падения напряжения регулировочного элемента. Это особенно важно для миниатюрных регуляторов, на которых каждые вспомогательные 50 милливольт падения преобразуются в несколько сотен милливатт теплоты со сложным рассеиванием в небольшом корпусе устройства.

Поэтому для подключения подобных схем многие фирмы предлагают проектировщикам микросхемы с малым падением до 100 милливольт. Хорошие параметры имеет микросхема ST 1L 08 при токовой нагрузке до 0,8 А наименьшее падение на транзисторе имеется около 70 милливольт.

Из заводских стабилизаторов можно отметить те, у которых при снижении нагрузочного тока до наименьшего значения падение снижается до 0,4 милливольта. Для уменьшения шума такие микросхемы снабжены вспомогательным буферным усилителем с клеммой для подключения наружного фильтра емкостью до 0,01 мкФ. К такому фильтру предъявляются наименьшие требования: величина емкости должна быть от 2,2 до 22 мкФ.

Особое внимание необходимо обратить на микросхему LD CL 015. При хороших свойствах и низком падении напряжения это один из стабилизаторов, работающих без конденсаторного фильтра. Это достигается схемой операционного усилителя с запасом по фазе. Однако для улучшения параметров и уменьшения шума на выходе целесообразно установить на выходе и входе прибора емкости около 0,1 мкФ.

Прибор с падением до 0,05 вольт

При подключении разной аппаратуры от аккумуляторов, чаще всего есть необходимость выравнивать напряжение и расходуемый ток. Например, для образования лазера видеопроигрывателя или фонарика на светодиодах. Для решения такой задачи на производстве уже спроектировано несколько микросхем в виде драйверов. Они представляют собой низковольтный преобразователь напряжения с внутренним стабилизатором. Новой разработкой является микросхема LТ 130 8А.

Не снижая преимущества таких драйверов, нужно заметить, что в большом областном городе нет таких микросхем. Можно заказать по высокой стоимости, около 10 евро. Поэтому есть дешевая простая и эффективная схема прибора из одного радио журнала.

Коэффициент стабилизации такого устройства равен 10000. Напряжение на выходе настраиваем сопротивлением 2,4 килома от 2 до 8 вольт. При величине питания на входе ниже выхода, настроечный транзистор открыт, и снижение питания равно нескольким мВ. Если входное напряжение выше выходного, то на стабилитроне оно равно 0,05 вольт. Это становится возможным для от пальчиковых батареек. Даже, меняя нагрузочный ток в интервале от 0 до 0,5 ампера, выходное напряжение изменится только на 1 мВ.

Для такого простого стабилизатора плату не обязательно травить, а можно вырезать специальным ножом. Оно изготавливается из сломанных полотен по железу, затачивается на шлифовальном круге. Затем ручку обматывают для удобства пользования.

Таким резаком можно процарапать дорожки на медной плате.

Плату чистим шлифшкуркой, лудим, припаиваем детали и все готово.

На фотографиях видно, что нет необходимости в травлении платы и ее сверлении.

Такой способ всегда применяется для производства маленьких простых схем. Нет необходимости оснащать радиатором охлаждения мощный транзистор. Он из-за небольшого падения напряжения не нагревается. При настройке обязательно необходимо подключить слабую нагрузку на выход.

Устройство выравнивания питания с малым падением

Наиболее важным свойством обладает стабилизатор с малым падением питания, так же как и на микросхемах, наименее допустимая разность потенциалов выхода и входа при наибольшей токовой нагрузке. Он определяет, при какой наименьшей разности напряжений между выходом и входом все свойства прибора находятся в норме.

  • У наиболее распространенных стабилизаторов, выполненных на микросхемах серии М78 наименьшее допускаемое напряжение равно 2 вольта при силе тока 1 ампер.
  • Прибор на микросхеме с минимальным напряжением на входе должен выдавать напряжение 7 вольт на выходе. При амплитуде импульсов на выходе прибора доходит до 1 вольта, то величина входного наименьшего напряжения увеличивается до 8 вольт.
  • С учетом нестабильности напряжения сети в интервале 10% увеличивается до 8,8 вольт.

В итоге КПД прибора не превзойдет 57%, при значительном токе на выходе микросхема сильно нагреется.

Применение микросхем с низким падением

Хорошим выходом из ситуации является использование таких сборок, как КР 1158 ЕН, или LМ 10 84.

Работа прибора на микросхеме заключается в следующем:

  • Малых значений напряжения можно достичь, применяя для регулировки мощный полевик.
  • Транзистор работает в положительной линии.
  • Использование стабилизатора с n-каналом предполагается по испытаниям: такие полупроводники не склонны к самовозбуждению.
  • Сопротивление открытой цепи ниже, по сравнению с p-канальным.
  • Транзистором управляет параллельный стабилизатор.
  • Для открытия полевого транзистора, напряжение на затворе доводят на 2,5 вольта выше истока.

Такой вспомогательный источник необходим, если у него напряжение на выходе выше напряжения стока полевого транзистора на это значение.

Имеется большая потребность в 5-вольтовых стабилизаторах с выходными токами несколько ампер и с как можно меньшим падением напряжения. Падение напряжения является просто разностью между входным постоян­ным напряжением и выходным с условием, что поддерживается стабилиза­ция. Необходимость в стабилизаторах с такими параметрами можно видеть на практическом примере, в котором напряжение никель-кадмиевого ак­кумулятора, равное примерно 8,2 В, стабилизируется на уровне 5 В. Если падение напряжения составляет обычные 2 или 3 В, то ясно, что длитель­но пользоваться таким аккумулятором невозможно. Увеличение напряже­ния аккумулятора является не лучшим решением, поскольку в этом слу­чае в проходном транзисторе будет бессмысленно рассеиваться мощность. Если бы можно было поддерживать стабилизацию при падении напряжения, например, вдвое меньшем, общая ситуация была бы намного лучше.

Известно, что непросто сделать в интегральных схемах стабилизаторов проходной транзистор с низким напряжением насыщения. Хотя желатель­но управлять проходным транзистором с помощью ИС, сам транзистор дол­жен быть отдельным устройством. Это естественно предполагает примене­ние гибридных устройств, а не полностью интехральных схем. Фактически это скрытое благословение, поскольку позволяет легко оптимизировать на­пряжение насыщения и бета транзистора для достижения намеченной цели. Кроме того, можно даже экспериментировать с германиевыми транзистора­ми, которые по своей природе имеют низкие напряжения насыщения. Дру­гой фактор, который следует учесть, состоит в том, что /7л/7-транзисторы имеют более низкие напряжения насыщения, чем их прп аналоги.

Использование этих фактов естественно приводит к схеме стабили­затора с низким падением напряжения, показанной на рис. 20.2. Паде­ние напряжение на этом стабилизаторе составляет 50 мВ при токе на­грузки 1 А и всего лишь 450 мВ при токе 5 А. Необходимость создания проходного транзистора по существу была стимулирована выпуском ли­нейного интегрального стабилизатора?71123. Кремниевый /?л/7-транзис-тор MJE1123 был специально разработан для этой схемы, но имеется не­сколько аналогичных транзисторов. Низкое напряжение насыщения является важным параметром при выборе транзистора, но важен также высокий коэффициент усиления по постоянному току (бета) для надеж­ного ограничения тока короткого замыкания. Оказалось, что германие­вый транзистор 2iV4276 позволяет получить даже более низкие падения напряжения, но, вероятно, за счет ухудшения характеристики ограниче­ния тока при коротком замыкании. Сопротивление резистора в цепи базы проходного транзистора (на схеме 20 Ом) подбирается опытным путем. Идея состоит в том, чтобы делать его как можно выше при при­емлемом падении напряжения. Его величина будет зависеть от предпо­лагаемого максимального входного напряжения. Другой особенностью

этого стабилизатора является низкая величина тока холостого хода, око­ло 600 мкА, что способствует долгому сроку службы аккумулятора.

Рис. 20.2. Пример линейного стабилизатора, имеющего низкое паде­ние напряжения. Здесь используется гибридная схема, потому что трудно получить низкое падение напряжения, применяя только ИС. Linear Technology Софога!1оп.

Аналогичный линейный стабилизатор с низким падением напряжения другой полупроводниковой фирмы показан на рис. 20.3. Основные характе­ристики остаются теми же самыми - падение напряжения 350 мВ при токе нафузки 3 А. И снова, применение гибридной схемы дает дополнительную гибкость при проектировании. Главное, чем отличаются различные ИС для управления такими стабилизаторами, состоит в наличии вспомогательных функций. Необходимость в них можно заранее оценить применительно к конкретному приложению и сделать соответствующий выбор. Большинство этих специализированных ИС имеют, по крайней мере, защиту от короткого замыкания и перегрева. Поскольку проходной рпр-тршшстор является вне­шним по отношению к ИС, важен хороший теплоотвод. Часто для обеспе­чения дополнительной стабилизации линейный стабилизатор с низким па­дением напряжения добавляют к уже созданному ИИП. Причем, к.п.д. системы в целом при этом практически не изменится. Этого нельзя сказать, когда для дополнительной стабилизации используется обычный интефаль-ный стабилизатор напряжения с 3-мя выводами.

Первым желанием может быть повторение только что описанных двух схем с низким падением напряжения, применяя обычный интег­ральный стабилизатор напряжения с 3-мя выводами и проходной тран­зистор. Однако ток покоя (ток, потребляемый интефальной схемой ста­билизатора, и который не протекает через нагрузку) будет намного выше, чем при использовании специальных схем. Это губит саму идею - не вводить дополнительного рассеяния мощности в системе.

Рис. 20.3. Другая схема линейного стабилизатора с малым падением нап­ряжения. Используется та же самая конфигурация с внешним рпр-транзистором. Выбранная управляющая ИС является лучшей с точки зре­ния требуемых вспомогательных функций. Cherry Semiconductor Соф.

На основе мощных переключательных полевых транзисторов можно построить линейные стабилизаторы напряжения. Подобное устройство было ранее описано в . Немного изменив схему, как показано на рис. 1, можно улучшить параметры описанного стабилизатора, существенно (в 5…6 раз) уменьшив падение напряжения на регулирующем элементе, в качестве которого применен транзистор IRL2505L. Он имеет в открытом состоянии весьма малое сопротивление канала (0,008 Ом), обеспечивает ток до 74 А при температуре корпуса 100 °С, отличается высокой крутизной характеристики (59 А/В). Для управления им требуется небольшое напряжение на затворе (2,5…3 В). Предельное напряжение сток-исток - 55 В, затвор-исток - ±16 В, мощность, рассеиваемая транзистором, может достигать 200 Вт.

Подобно современным микросхемным стабилизаторам, предлагаемый модуль имеет три вывода: 1 - вход, 2 - общий, 3 - выход. В качестве управляющего элемента применена микросхема DA1 - параллельный стабилизатор напряжения КР142ЕН19 (TL431). Транзистор VT1 выполняет функцию согласующего элемента, а стабилитрон VD1 обеспечивает стабильное напряжение для его базовой цепи. Значение выходного напряжения можно рассчитать по формуле
Uвых=2,5(1+R5/R6).
Выходное напряжение регулируют, изменяя сопротивление резистора R6. Конденсаторы обеспечивают устойчивую работу стабилизатора. Устройство работает следующим образом. При увеличении выходного напряжения повышается напряжение на управляющем входе микросхемы DA1, в результате чего ток через нее увеличивается. Напряжение на резисторе R2 увеличивается, а ток через транзистор VT1 уменьшается. Соответственно напряжение затвор-исток транзистора VT2 уменьшается, вследствие чего сопротивление его канала возрастает. Поэтому выходное напряжение уменьшается, восстанавливаясь до прежнего значения.

Регулирующий полевой транзистор VT2 включен в минусовый провод, а управляющее напряжение поступает на него с плюсового провода. Благодаря такому решению стабилизатор способен обеспечить ток нагрузки 20…30 А, при этом входное напряжение может быть всего на 0,5 В больше выходного. Если предполагается использовать модуль при входном напряжении более 16 В, то транзистор VT2 необходимо защитить от пробоя с помощью маломощного стабилитрона с напряжением стабилизации 10…12 В, катод которого подключают к затвору, анод - к истоку.

В устройстве можно применить любой n-канальный полевой транзистор (VT2), подходящий по току и напряжению из списка, приведенного в , желательно выделенный желтым цветом. VT1 - КТ502, КТ3108, КТ361 с любыми буквенными индексами. Микросхему КР142ЕН19 (DA1) допустимо заменить на TL431. Конденсаторы - К10-17, резисторы - Р1-4, МЛТ, С2-33.
Схема подключения модуля стабилизатора приведена на рис. 2.

При большом токе нагрузки на транзисторе VT2 рассеивается большая мощность, поэтому необходим эффективный теплоотвод. Транзисторы этой серии с буквенными индексами L и S устанавливают на теплоотвод с помощью пайки. В авторском варианте в качестве теплоотвода и одновременно несущей конструкции применен корпус от неисправного транзистора КТ912, КП904. Этот корпус разобран, удалена его верхняя часть так, что осталась позолоченная керамическая шайба с кристаллом транзистора и выводами-стойками. Кристалл аккуратно удален, покрытие облужено, после чего к нему припаян транзистор VT2. К покрытию шайбы и выводам транзистора VT2 припаяна печатная плата из двусторонне фольгированного стеклотекстолита (рис. 3). Фольга на обратной стороне платы целиком сохранена и соединена с металлизацией шайбы (стоком транзистора VT2) После налаживания и проверки модуля стабилизатора плата приклеена к корпусу. Выводы 1 и 2 - площадки на печатной плате, а вывод 3 (сток транзистора VT2) - металлический вывод-стойка на керамической шайбе.

Если применить детали для поверхностного монтажа: микросхему TL431CD (рис. 4), транзистор VT1 КТ3129А-9, транзистор VT2 IRLR2905S, резисторы Р1-12, то часть их можно разместить на печатной плате, а другую часть - навесным монтажом непосредственно на керамической шайбе корпуса. Внешний вид собранного устройства показан на рис. 5. Модуль стабилизатора напряжения не имеет гальванической связи с основанием (винтом) корпуса, поэтому его можно непосредственно разместить на теплоотводе, даже если он соединен с общим проводом питаемого устройства.

Также допустимо использовать корпус от неисправных транзисторов серий КТ825, КТ827. В таком корпусе кристаллы транзистора прикреплены не к керамической, а к металлической шайбе. Именно к ней, предварительно удалив кристалл, припаивают транзистор VT2. Остальные детали устанавливают аналогично. Сток транзистора VT2 в этом случае соединен с корпусом, поэтому модуль можно непосредственно установить на теплоотвод, соединенный с минусовым проводом питания нагрузки.
Налаживание устройства сводится к установке требуемого выходного напряжения подстроечным резистором R6 и к проверке отсутствия самовозбуждения во всем интервале выходного тока. Если оно возникнет, его нужно устранить увеличением емкости конденсаторов.

ЛИТЕРАТУРА
1. Мощные полевые переключательные транзисторы фирмы International Rectifier. - Радио, 2001, № 5, с. 45.
2. Нечеев И. Стабилизатор напряжения на мощном полевом транзисторе. - Радио, 2003, № 8. с. 53, 54.

И. НЕЧАЕВ, г. Курск
“Радио” №2 2005г.

Лучшие статьи по теме