Гид компьютерного мира - Информационный портал
  • Главная
  • Instagram
  • Раздел скс. Важные требования, предъявляемые к СКС

Раздел скс. Важные требования, предъявляемые к СКС


Обеспечение высокой пропускной способности передающего тракта – важнейший вопрос при проектировании и инсталляции технических систем безопасности. Он особенно актуален, если необходимо решить проблему передачи видеосигнала, потому что системы видеонаблюдения – это высокоинформативные системы, объем передаваемой информации и данных в них значительно выше, чем, например, в охранно-пожарной сигнализации. Специалисты знают: если передающий тракт не обеспечит необходимой пропускной способности сети, все разговоры о нюансах работы качественной видеоаппаратуры могут превратиться, по сути, в пустой звук.

Всё более часто сталкиваясь с подобной проблемой, заказчики при инсталляции комплексных охранных систем обращаются не просто к поставщикам оборудования, а к организациям, строящим структурированные кабельные системы (СКС) для подключения на их базе систем видеонаблюдения. Можно привести немало примеров, когда компании, изначально специализирующиеся на создании СКС, успешно входили на рынок технических систем безопасности.

Для этих заметок имеется и еще один весомый повод: не так давно вышел новый международный стандарт на СКС. Считаю необходимым остановиться подробнее на вопросах построения структурированных кабельных систем для систем безопасности. Может быть, это положит начало обсуждению технических решений, предлагаемых в данной области.

СКС – слаботочная телекоммуникационная кабельная система, обслуживающая все инженерные системы, расположенные в здании. СКС должна отвечать следующим необходимым требованиям:
– иметь стандартизованную структуру и топологию;
– использовать только стандартизованные компоненты (кабели, распределительные устройства, разъемы и т. д.)‏;
– обеспечивать стандартизованные электромагнитные параметры (затухание, ширину полосы пропускаемых частот и др.) линий связи, организованных с ее помощью;
– управляться (администрироваться) стандартизованными методами.

Структурированная кабельная система представляет собой иерархическую кабельную систему здания или группы зданий, разделенную на структурные подсистемы.

Структурированная кабельная система состоит из:
– набора кабелей (медных и/или оптических);
– коммутационных панелей;
– соединительных шнуров;
– кабельных разъемов;
– модульных гнезд;
– информационных розеток (ИР)‏;
– вспомогательного оборудования.

Все перечисленные элементы интегрируются в единую систему и эксплуатируются согласно определенным правилам.

Все СКС должны строиться по единым правилам, иметь одинаковые средства коммутации и подключения оборудования, обеспечивать заранее известные параметры среды передачи данных. В последнее время начала формироваться концепция построения кабельной системы, т. е. устройства, выполненного из компонентов стандартизированного ряда, построенного по модульному принципу, обладающего заранее заданными характеристиками, которые обеспечивают работоспособность аппаратуры, подключенной к СКС. Удивительно, но эти идеи, давно принятые и реализованные, в частности, в машиностроении (стандартный ряд резьбовых соединений, подшипников и проч.), только теперь начали завоевывать позиции в области телекоммуникаций .

История вопроса
Начало 50-х гг. прошлого века – дата рождения первых телефонных сетей. В 80-е гг. появились первые кабельные решения: IBM связывала свои мэйнфреймы с помощью 93-омного коаксиального кабеля RG-62 по топологии «звезда». Первые кабельные решения были представлены крупнейшими производителями компьютерного и телефонного оборудования и опирались на закрытые технологии. Многие разработки преследовали исключительно частные цели и задачи конкретной организации. Нарождающийся рынок локальных сетей страдал от хронического отсутствия единообразия, что было неизбежно ввиду изменения структуры отрасли.

1987 год – комитет TR41.8 (Ассоциации электронной промышленности) начал разработку стандарта для кабелей, размещаемых внутри зданий.

1989 год – исследовательская организация Underwriters Laboratories совместно с фирмой Anixter разработала новую классификацию кабелей на витых парах.

1991 год – публикация спецификации ANSI/EIA/TIA-568. Разработчики – Ассоциация электронной промышленности (Electronic Industry Association – EIA) и Ассоциация производителей средств связи (Telecommunications Industries Association – TIA).

Справедливости ради надо признать, что довольно долго даже законопослушные западные компании игнорировали рекомендации комитетов по стандартам. Это отчасти и явилось причиной того, что снизилось качество предоставляемых на рынке услуг.

Несоблюдение требований к монтажу и размещению СКС, ее терминированию и тестированию было достаточно частым явлением. В связи с этим остро встала проблема повышения квалификации сотрудников отрасли. Да и доработка самих стандартов вскоре стала насущной необходимостью. Появились серьезные институты с отличной репутацией: TIA и CBM. Эти институты развернули активную работу с целью повысить информированность о доминирующих стандартах и предоставить должное обучение тем, кто к этому стремился.

1995 год – принято два основных нормативно-технических документа, описывающих СКС как технический объект. Это американский стандарт TIA/EIA-568-A и международный стандарт ISO/IEC 11801.

Несмотря на то что оба основных документа описывают один и тот же технический объект, они имеют достаточно серьезные концептуальные отличия, рассматривая СКС с разных позиций, и в значительной степени взаимно дополняют друг друга. Стандарт второго поколения TIA-568-A (Commercial Building Telecommunications Cabling Standard) существенно отличался от предыдущего документа тем, что применение коаксиального кабеля не рекомендовалось для построения вновь создаваемых СКС и одновременно было разрешено использование одномодовых волоконно-оптических кабелей в магистральных подсистемах.

В связи с бурным развитием информационных технологий, необходимостью трансляции всё больших потоков информации в сентябре 2002 г. опубликована вторая редакция стандарта ISO/IEC IS 11801:2002(Е), в котором введены новые параметры и уточнены значения традиционных параметров компонентов и трактов на основе витых пар для обеспечения передачи в горизонтальной подсистеме информационных потоков сетевых интерфейсов Gigabit Ethernet и аналогичных им.

С 2002 г. по настоящее время развитие информационных технологий пошло не по пути резкого увеличения объема транслируемых потоков информации, как это прогнозировалось, а по пути улучшения технологичности самих сетей. В связи с этим в 2008 г. была принята новая редакция стандарта ISO/IEC IS 11801:2008(Е). Этот стандарт является весьма объемным и серьезным документом, описывающим все особенности построения и проектирования СКС.

К сожалению, в России на сегодняшний день в группе стандартов ГОСТ Р 34 «Информационная технология» отсутствует национальный стандарт СКС. Поэтому российские проектировщики, разработчики, поставщики, инсталляторы, владельцы СКС вынуждены в своей работе исходить из международных стандартов.

Составляющие СКС
Если СКС спроектирована и инсталлирована правильно, она может служить 25 лет и более и таким образом является капитальной системой. Обслуживается СКС так же, как и любая капитальная система: регулярные осмотры и проверки, называемые тестированием и сертификацией системы на соответствие стандартам определенного класса. Возможны профилактические ремонты этой системы, регламентные работы, переключения и т. д. Строить и давать гарантии на структурированную кабельную систему имеют право только сертифицированные специалисты.

Для возможности классификации и сертифицирования структурированной кабельной системы необходимо знать, что электромагнитные характеристики СКС определены стандартом ISO/IEC 11801:2008 (Е) для определенных конфигураций: канала и стационарной линии.

Стационарная линия (Permanent Link) – это пассивный участок СКС между двумя непосредственно соединенными между собой точками (интерфейсами) присоединения к ней, по которому может быть передан сигнал. То есть стационарная линия – это стационарный кабель и соединители на его концах (рис. 1). Стационарная линия предназначена для проверки рабочих характеристик стационарного компонента кабельной проводки.

Понятие Permanent Link введено для того, чтобы определить тестовую конфигурацию, максимально точно характеризующую параметры стационарной части кабельной системы. Конфигурация Permanent Link требует, чтобы вклады соединительных кабелей, используемых для доступа к тестируемой линии, исключались из результатов измерений. Поэтому предельные тестовые значения для Permanent Link отличаются от значений для Link на величину, относимую на счет соединительных кабелей тестера согласно априорной оценке. Общая длина линии Permanent Link может достигать 90 м.

В состав стационарной линии не входят шнуры, используемые для подключения передающего и принимающего устройств, равно как и никакие коммутационные шнуры.

Канал (Channel) – это пассивный тракт, способный передавать сигнал из конца в конец, соединяющий два любых активных блока электронной аппаратуры, например, рабочую станцию и коммутатор ЛВС (рис. 2).

Канал (Channel), согласно стандарту ISO/IEC 11801:2008(E), – это тракт взаимодействия между собой активного сетевого оборудования. Понятие введено с 1999 г. Канал включает в себя стационарную линию СКС и разнообразные шнуры, используемые для подключения. Канал как объект измерений – такая модель была введена для достижения лучшей аппроксимации итоговой конфигурации пользовательской системы.

Стандарт описывает два принципиально различных объекта измерений: стационарная линия (Permanent Link) и канал (Channel). В документе приводятся соответствующие для обоих объектов. При наличии специальных требований на этапе приемосдаточных испытаний может быть выполнена выборочная или сплошная проверка параметров канала или стационарной линии.

С моделью канала удобно работать во время текущей эксплуатации СКС при поиске и устранении неисправностей.

Ограничения по производительности для симметричных кабелей жестко задают компоненты, на базе которых создается канал (ISO/IEC 11801:2008(E)). Для максимальных величин – это 90 м одножильного медного кабеля, 10 м разнообразных шнуров и 4 сочленения (1 сочленение – это соединенные вместе вилка и розетка). Для класса F в действующей версии стандарта допускается только 2 сочленения.

Как известно, активные коммутаторы, видеорегистраторы и другое подобное оборудование предъявляют к каналам передачи информации различные требования по полосе пропускания частот. Поэтому электрические каналы и линии разбиты на шесть классов: A, B, C, D, E, F. Каналы и линии указанных классов обеспечивают гарантированную поддержку соответствующих классов и всех более низких классов. Компоненты, из которых создается структурированная кабельная система (кабели, коннекторы, вилки, гнезда), также классифицируются в стандарте ISO/IEC 11801:2008(E) по ширине пропускаемых частот, различные требования предъявляются и к качеству монтажа.

Классы приложений
Класс А: линии, специфицированные до 100 кГц для голоса и низкоскоростной передачи данных – передача видеосигнала.
Класс B: линии, специфицированные до 1 МГц для среднескоростной передачи данных – скорость передачи 1 Мбит/с.
Класс С: линии, специфицированные до 16 МГц для высокоскоростной передачи данных – скорость передачи 10 Мбит/с.
Класс D: линии, специфицированные до 100 МГц для сверхскоростной передачи данных – скорость передачи 100 Мбит/с – 1 ГГбит/с.
Класс E: линии, специфицированные до 250 МГц для сверхскоростной передачи данных со скоростью до 1 ГГб/с.
Класс F: линии, специфицированные до 600 МГц для сверхскоростной передачи данных со скоростью 1 ГГб/с – 10 ГГб/с.

То есть если мы выберем высококачественные камеры видеонаблюдения, формирующие кадры с высоким разрешением, а значит, с большим объемом, качественные видеорегистраторы или коммутаторы, транслирующие полученное изображение в режиме живого видео в сеть, что также займет немалый объем трафика, а трансляцию организуем по кабельной системе, заведомо более низкого класса или неправильно спроектированной, то качество изображения будет безвозвратно потеряно, не будет достигнут также и режим живого видео. Следовательно, вложенные в аппаратуру инвестиции себя не оправдают.

Помимо частотного диапазона стандарт ISO/IEC:2008(E) предъявляет четкие требования к параметрам каналов и стационарных линий как на основе витых пар, так и на основе волоконно-оптических кабелей. Для систем на основе витых пар каналы классов D, E, F должны иметь волновое сопротивление 100 Ом, для классов A, B, C предпочтительным является значение 100 Ом, но допускается и значение 150 Ом. Также стратифицируются такие параметры, как возвратные потери, потери ввода, структурные возвратные потери, защищенность на ближнем конце (NEXT), суммарное переходное затухание на ближнем конце (PSNEXT), переходное затухание на дальнем конце (FEXT) и его суммарное значение (PSFEXT), соотношение затухания и переходного затухания на ближнем конце (ACR), суммарное нормированное на потери ввода переходное затухание на ближнем конце (PSARC), нормированное на потери ввода переходное затухание на дальнем конце тракта (ELFEXT), суммарное нормированное на потери ввода переходное затухание на дальнем конце ввода (PSELFEXT), задержка сигнала (PD) и перекос задержек (DS).

Использование параметров кабельной структуры неизбежно и в процессе инсталляции системы видеонаблюдения. Инсталлятору необходимо рассчитать расположение источника питания и камеры. Согласно международному стандарту ISO/IEC11801 витая пара категории 5 (класс D) 100 МГц со скоростью передачи данных 1 ГГб/с имеет сопротивление не более 20 Ом на 100 м (реально около 2 Ом на 100 м). На 300 м витой пары падает не более 6 В напряжения. Поэтому источник питания можно подключить на расстоянии около 300 м от камеры. Для более точных расчетов необходимо тестировать структурированную кабельную систему.

Несколько слов целесообразно сказать о СКС на основе волоконно-оптических кабелей. Основные стандартизованные параметры ВОЛС – числовая апертура (NA), затухание (A), коэффициент широкополосности (K).

В линиях, использующих оптический кабель для высокоскоростной и сверхскоростной передачи данных, не рассматривается в качестве ограничителя ширина полосы. Числовое значение, указанное в названии класса, определяет минимальную длину канала в метрах, на которой канал этого класса гарантированно поддерживает соответствующее приложение, если канал создан в соответствии с требованиями стандарта:
Класс OF-300: от 300 м.
Класс OF-500: от 500 м.
Класс OF-2000: от 2 км.

Высший класс OF-2000 обеспечивает работу приложений, в том числе протокола Gigabit Ethernet 1000Base-LX по одномодовому волокну OS1 до 2000 м при IL 4,56 дБ в окне 1310 нм.

Класс OF-500 обеспечивает работу приложения Gigabit Ethernet 1000Base-LX по многомодовому волокну OМ1, OМ2 и OМ3 до 500 м при IL 2,35 дБ в окне 1300 нм.

Увеличение длины канала с 550 до 2000 м в окне 1300 нм обеспечено за счет улучшения профиля преломления.

В стандарте закреплена ширина полосы пропускания (коэффициент широкополостности) при лазерном вводе не мене 2000 МГц х км в окне 850 нм для волокон ОМ3.

Следовательно, выбор передающей аппаратуры, например активных коммутаторов, для передачи видеосигнала необходимо производить либо с учетом имеющейся СКС на объекте, либо с учетом территориальной протяженности объекта и правил проектирования структурированной кабельной системы на ВОЛС.

В заключение необходимо обратить внимание на следующий факт.

Единственная компания, которая проводит исследования рынка СКС по всем странам мира, – независимая консалтинговая компания BSRIA – Building Servies Research & Information Association, находящаяся в Великобритании.

По данным официального отчета BSRIA по рынку медных СКС за 2007 г. в России, СКС Eurolan занимает 3-е место с долей рынка 8,7%, уступая только Typo Electronics (10,8%) и Systimax Solution (16,9 %).

ЛИТЕРАТУРА:
Сети и системы связи, № 6, 5 мая 2008, стр. 11. Самарский П. А. Основы структуированных кабельных систем. М.: 2005.

Структурированная кабельная система (СКС) представляет собой завершённую совокупность кабелей связи и коммутационного оснащения, которая соответствует нормативной документации. Система СКС - это универсальная система объекта или группы объектов, которая может использоваться без реструктуризации длительный период времени.

СКС кабельные системы осуществляют передачу таких типов сигналов, как речевые, информационные, видеосигналы. Передача сигналов происходит с высокой скоростью, надёжно и стабильно. Структурированная кабельная система универсальна как для компьютерных и телефонных сетей, так и для охранных систем и пожарной сигнализации. Использование системы СКС способствует повышению эффективности организации, уменьшает эксплуатационные расходы, улучшает взаимодействия внутри компании, способствует качественному обслуживанию клиентов.

Для того чтобы обеспечить надёжную работу служб и подразделений объекта, необходима корректная организация структурированных кабельных систем (СКС). Система СКС должна удовлетворять потребности пользователей в течение срока пока существует здание. Слаботочные системы СКС по предназначению относятся к коммерческим системам.

Из чего состоит структурированная кабельная система?

Система СКС - это иерархическая кабельная система, в состав которой входят структурные подсистемы. В основе системы лежат медные или оптические кабели. В составе СКС кабельных систем различают такие элементы:

  1. главный кросс;
  2. кабель магистральной подсистемы первого и второго уровня (среда передачи данных СКС);
  3. промежуточные кроссы;
  4. горизонтальные кроссы, кабели горизонтальной подсистемы;
  5. консолидационные точки;
  6. многопользовательские телекоммуникационные розетки (точки входа в кабельную сеть объекта).

Элементы слаботочной системы СКС представляют единый комплекс, который используется по определенным правилам. Система должна быть устроена так, чтобы из любой точки подключения были доступны все ресурсы сети. Устройство кабельной системы обуславливается инфраструктурой информационных технологий (Information Technology (IT)). Именно от инфраструктуры IT зависит содержание каждого проекта системы СКС.

Преимущества структурированной кабельной системы по сравнению с традиционными системами

СКС кабельные системы универсальны. Они обеспечивают поддержку всех распространённых протоколов и передачу информации в различных сетях и системах, на основании современных технологий и разработок.

Слаботочные системы СКС при грамотном проектировании и установке позволяют без дополнительных расходов изменять конфигурацию сети в течение 15-20 лет. То есть затраты на поддержку будут минимальными. Следовательно, уровень соотношения «цена-качество» высокий.

Установка и эксплуатация систем СКС является экономически более выгодной, чем использование отдельных кабельных систем для каждого вида оборудования.

Используется только высококачественное оборудование, поэтому СКС кабельные системы обладают высокой надёжностью и длительной стабильностью параметров. Все компоненты и материалы являются стандартными и не зависят от изменений технологий и поставщика аппаратуры. Фирмы производители гарантируют работоспособность оборудования в течение 20-25 лет.

Для поддержания эффективной работы структурированной кабельной системы необходимо небольшое количество обслуживающего и административного персонала.

Система СКС позволяет централизованно управлять, контролировать и проводить мониторинг различных служб и систем жизнеобеспечения здания.

Компания «Система» предоставляет услуги по проектированию, монтажу и тестированию структурированных кабельных систем (СКС). Наши специалисты разрабатывают проекты систем СКС, учитывая индивидуальные пожелания заказчика, требования по скорости обмена данными и уровень защищенности информации. Компания «Система» обладает соответствующей инструментальной базой для проведения качественной инсталляции и тестирования слаботочных систем СКС.

Наши специалисты готовы предоставить бесплатную консультацию и ответить на любые возникшие вопросы. Компания «Система» следует всем требованиям отечественных и международных стандартов. С сертификатами и лицензиями нашей компании вы можете ознакомиться на сайте.

Топология СКС.

В основу любой структурированной кабельной системы положена древовидная топология, которую иногда называют также структурой иерархической звезды.

Узлами структуры являются коммутационное оборудование различного вида, которое обычно устанавливается в технических помещениях и соединяется друг с другом и с информационными розетками на рабочих местах слаботочными электрическими и/или оптическими кабелями. Стандарты не регламентируют тип коммутационного оборудования, определяя только его параметры. Для монтажа и дальнейшей эксплуатации коммутационного оборудования необходимы технические помещения. Все кабели, входящие в технические помещения, обязательно заводятся на коммутационное оборудование, на котором осуществляются все необходимые подключения и переключения в процессе строительства и текущей эксплуатации кабельной системы. Это обеспечивает гибкость СКС, возможность легкой переконфигурации и адаптируемости под конкретное приложение.

Основой для применения именно иерархической звездообразной топологии является возможность ее использования для поддержки работы всех основных сетевых приложений.

Технические помещения.

Технические помещения, необходимые для построения СКС и информационной структуры предприятия, в целом делятся на аппаратные и кроссовые.

Аппаратная - техническое помещение, в котором наряду с с коммутационным оборудованием СКС располагается сетевое оборудование коллективного пользования (АТС, серверы, концентраторы). Если основной объем установленных в этом помещении технических средств составляет оборудование ЛВС, то его иногда называют серверной, а если учрежденческая АТС и системы внешних телекоммуникаций - узлом связи. Большие аппаратные оборудуются фальшполами, системами пожаротушения, кондиционирования и контроля доступа.

Кроссовая - помещение, в котором размещается коммутационное оборудование СКС, сетевое и другое вспомогательное оборудование. Желательно ее размещение вблизи вертикального стояка, оборудование телефоном и системой контроля доступа. При этом уровень оснащения кроссовой оборудованием инженерного обеспечения ее функционирования в целом является более низким по сравнению с аппаратными. Кроссовые на практике достаточно часто называют просто техническими (этажными) помещениями, встречается также наименование "хабовые".

Аппаратная может быть совмещена с Кроссовой Здания (КЗ). В этом случае его сетевое оборудование может подключаться непосредственно к коммутационному оборудованию СКС. Если аппаратная расположена отдельно, то ее сетевое оборудование подключается к локально расположенному коммутационному оборудованию или к обычным Информационным Розеткам (ИР) рабочих мест. В Кроссовую Внешних Магистралей (КВМ) сходятся кабели внешней магистрали, подключающие к ней другие КЗ. В КЗ заводятся внутренние магистральные кабели, подключающие к ним Кроссовые Этажей (КЭ). К КЭ, в свою очередь, горизонтальными кабелями подключены информационные розетки рабочих мест. В качестве дополнительных связей, увеличивающих гибкость и живучесть системы, допускается прокладка внешних магистральных кабелей между КЗ и внутренних магистральных кабелей между КЭ (обозначены пунктиром).

Во всей СКС может быть только одна КВМ, а в каждом здании может присутствовать не более одной КЗ. Допускается объединение КВМ с КЗ, если они расположены в одном здании. Аналогично КЗ может быть совмещена с КЭ, если они расположены на одном этаже. Если плотность рабочих мест на этаже или его части мала, то в качестве исключения допускается подключение к КЭ горизонтальных кабелей смежных этажей.

Подсистемы СКС

В самом общем случае СКС, согласно международному стандарту ISO/IEC 11801, включает в себя три подсистемы:

* подсистема внешних магистралей (campus backbone cabling) или по терминологии некоторых СКС европейских производителей "первичная подсистема", состоит из внешних магистральных кабелей между КВМ и КЗ, коммутационного оборудования в КВМ и КЗ, к которому подключаются внешние магистральные кабели, и коммутационных шнуров и /или перемычек в КВМ. Подсистема внешних магистралей является основой для построения сети связи между компактно расположенными на одной территории зданиями (campus). На практике эта подсистема достаточно часто имеет физическую кольцевую топологию, что дополнительно обеспечивает увеличение надежности за счет наличия резервных кабельных трасс. Из этих же соображений подсистема внешних магистралей иногда реализуется по двойной кольцевой топологии. Если СКС устанавливается автономно только в одном здании (или его части), то подсистема внешних магистралей отсутствует;
* подсистема внутренних магистралей (building backbone cabling), называемая в некоторых СКС вертикальной или вторичной подсистемой, содержит проложенные между КЗ и КЭ внутренние магистральные кабели, подключенное к ним коммутационное оборудование в КЗ и КЭ, а также коммутационные шнуры и /или перемычки в КЗ. Кабели рассматриваемой подсистемы фактически связывают между собой отдельные этажи здания и/или пространственно разнесенные помещения в пределах одного здания. Если СКС обслуживает один этаж, то подсистема внутренних магистралей может отсутствовать;
* горизонтальная подсистема (horizontal cabling), иногда называемая третичной подсистемой, образована внутренними горизонтальными кабелями между КЭ и информационными розетками рабочих мест, самими ИР, коммутационным оборудованием в КЭ, к которому подключаются горизонтальные кабели, и коммутационными шнурами и /или перемычками в КЭ.

Рассматриваемое здесь деление СКС на отдельные подсистемы применяется независимо от вида или формы реализации сети, то есть оно будет одинаковым, например, для офисной и производственной сети.

Иногда из соображений удобства проектирования и эксплутационного обслуживания применяется более мелкое дробление оборудования СКС на отдельные подсистемы. Так, например, элементы подключения сетевого оборудования к СКС в кроссовой выделяются в отдельную административную подсистему, а шнуры, адаптеры и другие элементы, необходимые на рабочих местах, образуют отдельную подсистему рабочего места и т.д.

В самом общем случае СКС, согласно действующим редакциям международных нормативно-технических документов, включает в себя восемь компонентов:

1. линейно-кабельное оборудование подсистемы внешних магистралей;
2. коммутационное оборудование подсистемы внешних магистралей;
3. линейно-кабельное оборудование подсистемы внутренних магистралей;
4. коммутационное оборудование подсистемы внутренних магистралей;
5. линейно-кабельное оборудование горизонтальной подсистемы;
6. коммутационное оборудование горизонтальной подсистемы;
7. точки перехода;
8. информационные розетки;

В подавляющем большинстве случаев подключение к СКС сетевого оборудования производится с помощью коммутационного шнура (патч-корда). В некоторых ситуациях кроме шнура может понадобиться адаптер, обеспечивающий согласование сигнальных и механических параметров оптических или электрических интерфейсов (разъемов) СКС и сетевого оборудования. Например, адаптеры применяются для подключения к СКС сетевого оборудования с интерфейсами V.24 (RS-232C), устройств кабельного телевидения, систем IBM AS/400 с терминалами 5250, терминальных контроллеров IBM 3274 и терминалов 3270, а также дополнительных приложений, которые разрабатывались для других кабельных систем.

Подсистема рабочего места обеспечивает подключение сетевого оборудования на рабочих местах. Применяемое для ее реализации оборудование целиком и полностью зависит от конкретного приложения. Она не является частью СКС и выходит за рамки действия стандартов ISO/IEC 11801 и TIA/EIA-568, хотя эти нормативные документы накладывают на ее параметры и характеристики определенные ограничения.

Коммутация в СКС.

Принципиальная особенность любой СКС состоит в том, что коммутация в ней, в отличие от электронных АТС и сетевого компьютерного оборудования, всегда производится вручную коммутационными шнурами и /или перемычками. Наиболее важным следствием такого подхода является то, что функционирование СКС принципиально не зависит от состояния электропитающей сети. Введение в состав СКС элементов электронной или электронномеханической коммутации немедленно влечет за собой обязательное использование в оборудовании штатного источника электропитания. С экономической и технической точки зрения такое решение абсолютно неоправдано на нынешнем этапе развития техники: среднее количество переключений одного порта в действующей системе составляет единицы раз в год, а источник питания обладает существенно меньшей эксплуатационной надежностью по сравнению с пассивными компонентами, образующими кабельную систему. Оборотной стороной отказа от применения штатного источника электропитания можно назвать:

* необходимость использования коммутационных шнуров, которые существенно ухудшают массогабаритные показатели коммутационного оборудования и требуют применения специальных мер для решения задач администрирования;
* невозможность введения в состав СКС штатных коммутаторов, контроллеров, датчиков и другого аналогичного оборудования, что снижает удобство эксплуатации, увеличивает время поиска неисправности, затрудняет текущую диагностику и т.д.

Известны лишь отдельные доведенные до серийного производства разработки, направленные на внедрение активных компонентов в некоторые подсистемы СКС. Однако они носят вспомогательный характер (опрос состояния портов, индикация, коммутация сигналов низкоскоростных приложений), не затрагивают процесс передачи информационных сигналов и не нормируются действующими стандартами и предложениями по их перспективным редакциям.

Принципы администрирования СКС.

Принципы администрирования (иначе управления) СКС целиком и полностью определяются ее структурой. Различают одноточечное и многоточечное администрирование. Под многоточечным администрированием понимают управление СКС, которая построена по классической архитектуре иерархической звезды. Основным признаком этого варианта является необходимость выполнения переключения минимум двух шнуров в общем случае изменения конфигурации. Использование данного принципа гарантирует наибольшую гибкость управления и возможность адаптации СКС для поддержки новых приложений.

Архитектура одноточечного администрирования применяется в тех ситуациях, когда требуется максимально упростить управление кабельной системой. Принципиально может использоваться только для СКС, установленных в одном здании и не имеющих магистральной подсистемы. Ее основным признаком является прямое соединение всех информационных розеток рабочих мест с единственным техническим помещением. Несложно убедиться в том, что одноточечное администрирование может быть использовано только в небольших сетях и упрощает процесс управления кабельной системой благодаря выполнению всех коммутаций шнурами в одном месте.

Кабели СКС.

Одним из удачных способов повышения технико-экономической эффективности кабельных систем офисных зданий является минимизация типов кабелей, применяемых для их построения. В СКС согласно международному стандарту ISO/IEC 11801 допускается использование только:

* симметричных электрических кабелей на основе витой пары с волновым сопротивлением 100, 120 и 150 Ом в экранированном и неэкранированном исполнении;
* одномодовых и многомодовых оптических кабелей.

Электрические кабели используются в основном для создания горизонтальной разводки. По ним передаются как телефонные сигналы и низкоскоростные данные, так и данные высокоскоростных приложений. Применение оптических решений в горизонтальной подсистеме в настоящее время встречается достаточно редко, хотя их доля растет очень быстрыми темпами (решения в рамках концепции fiber to the desk). В подсистеме внутренних магистралей электрические и оптические кабели применяются одинаково часто, причем электрические кабели предназначены для передачи главным образом телефонных сигналов и данных с тактовыми частотами до 1 МГц, тогда как оптические кабели обеспечивают передачу данных высокоскоростных приложений. На внешних магистралях оптические кабели играют доминирующую роль.

Для перехода с электрического кабеля на оптический в технических помещениях устанавливается соответствующее сетевое оборудование (преобразователи среды или медиаконверторы , или трансиверы), которые обычно обслуживают групповое устройство (коммутатор системы передачи данных, выносной модуль АТС, контроллер инженерной системы здания и т.п.). Прямое использование волоконно-оптического кабеля для передачи телефонных сигналов и низкоскоростных данных на современном этапе развития техники является экономически нецелесообразным и применяется в тех ситуациях, когда другие решения невозможны или же выдвигаются особые требования в отношении защиты информации от несанкционированного доступа. Поэтому для улучшения технико-экономической эффективности сети в целом процесс преобразования низкоскоростного электрического сигнала в оптический обычно совмещается с мультиплексированием.

Для построения горизонтальной подсистемы стандартами допускается применение экранированного и неэкранированного кабелей. Экранированный симметричный кабель потенциально обладает лучшими электрическими, а в некоторых случаях и прочностными характеристиками по сравнению с неэкранированным. Однако этот кабель является очень критичным к качеству выполнения монтажа и заземления, имеет заметно большую стоимость и худшие массогабаритные показатели. Поэтому пока основным кабелем для передачи электрических сигналов по СКС, являются кабели на основе неэкранированных витых пар. Как было отмечено выше, стандарты разрешают строить СКС на электрических кабелях с волновым сопротивлением 100, 120 и 150 Ом. При этом две последние разновидности кабелей часто обладают заметно лучшими характеристиками. Однако в силу целого ряда причин технического и экономического плана они не получили широкого распространения в нашей стране.

Многомодовые волоконно-оптические кабели используются в основном в качестве основы подсистемы внутренних магистралей. Одномодовые волоконно-оптические кабели рекомендуется применять только для построения длинных внешних магистралей.

Коаксиальные кабели не включаются в число разрешенных к применению в новых стандартах и исключаются из очередных редакций старых стандартов. Это объясняется низкой надежностью сетей, построенных на их основе, невысокой технологичностью и более высокой стоимостью по сравнению с кабелями на основе витых пар.

Для обеспечения возможности работы по СКС сетевой аппаратуры с коаксиальным и триаксиальным интерфейсом используется широкая номенклатура адаптеров различных видов.

Классы приложений, категории кабелей и разъемов СКС.

Действующая редакция стандарта ISO/IEC 11801 подразделяет все виды приложений, которые могут обмениваться данными по витым парам, на 4 класса - A, B, C и D (табл.4).
Класс линии Определение и приложения
A Телефонные каналы и низкочастотный обмен данными. Максимальная частота сигнала - 100 кГц
B Приложения со средней скоростью обмена. Максимальная частота сигнала - 1 МГц
C Приложения с высокой скоростью обмена. Максимальная частота сигнала - 16 МГц
D Приложения с очень высокой скоростью обмена. Максимальная частота сигнала - 100 МГц
Оптический Приложения, использующие в качестве среды передачи сигнала оптический кабель. Частоты 10 МГц и выше

Таблица 4. Классы приложений по ISO/IEC 11801.

Класс А считается низшим классом, а класс G высшим. Для приложений каждого класса определяется соответствующий класс линии связи, который задает предельные электрические характеристики линии, необходимые для нормальной работы приложений соответствующего и более низкого класса (табл. 5).
TIA/EIA-568-A ISO/IEC 11801 EN 50173 ISO/IEC 11801 (приложения)
- - - A
- - - B
Категория 3 Категория 3 Категория 3 С
Категория 4 Категория 4 Категория 4 -
Категория 5 Категория 5 Категория 5 D
- Категория 6 - E
- Категория 7 - F
- Категория 8 - G

Таблица 5. Соответствия категорий кабелей и соединителей классам приложений.

К приложениям оптического класса относятся те из них, которые используют в качестве среды передачи сигнала оптический кабель. На момент принятия стандарта ширина полосы пропускания для таких приложений не являлась ограничивающим фактором.

Интересно также отметить, что стандарт ISO/IEC 11801 не предполагает приложений и линий с максимальной частотой передачи 20 МГц, соответствующих 4-й категории разъемов и кабелей. Это обусловлено отсутствием популярных сетевых приложений с максимальными частотами сигнала от 16 до 20 МГц.

В некоторых европейских странах иногда практикуется введение дополнительных классов приложений. Так, например, в немецкоязычной технической литературе приложения с верхней граничной частотой 200 МГц иногда называют приложениями класса D+, тогда как приложения с граничной частотой 300 МГц обозначаются приложениями класса D++.

Стандарты ISO/IEC 11801 и TIA/EIA-568-A в дополнение к кабелям специфицируют по категориям разъемы. Категории определяются максимальной частотой сигнала, на которую рассчитаны соответствующие разъемы и кабели (табл. 6). Кабели и разъемы более высоких категорий поддерживают все приложения, рассчитанные на работу по кабелям более низких категорий.
Категория кабеля и разъема Максимальная частота сигнала Типовые приложения
Категория 3 До 16 МГц Локальные сети Token Ring и Ethernet 10Base-T, голосовые каналы и другие низкочастотные приложения
Категория 4 До 20 МГц Локальные сети Token Ring и Ethernet 10Base-T
Категория 5 До 100 МГц Локальные сети со скоростью передачи данных до 1000 Мбит/с
Категория 5е До 100 МГц Локальные сети со скоростью передачи данных до 1000 Мбит/с
Категория 6 До 250 МГц Локальные сети со скоростью передачи данных до 1000 Мбит/с
Категория 7 До 600 МГц Локальные сети со скоростью передачи данных до 1000 Мбит/с, сигналы кабельного телевидения
Категория 8 До 1200 МГц Локальные сети со скоростью передачи данных до 1000 Мбит/с, сигналы кабельного телевидения

Приложения класса Е и компоненты СКС категории 6 первоначально имели нормируемые характеристики до частоты 200 МГц, которая впоследствии была увеличена до 250 МГц. Необходимость расширения частотного диапазона гарантируемых параметров была обусловлена требованием обеспечения потенциальной возможности поддержки функционирования двухпарных вариантов интерфейсов Gigabit Ethernet. Класс F и компоненты категории 7 рассчитываются на частоты до 600 МГц. Выбор последнего значения не в последнюю очередь обусловлен широким распространением аппаратуры АТМ со скоростью передачи 622 Мбит/с, а также необходимостью поддержки передачи сигналов многоканального аналогового телевидения с верхней граничной частотой 550 МГц.

Для построения трактов категории 6 используются кабели всех типов (экранированные и неэкранированные). В качестве соединителя применяется, в основном, модульный разъем. Существуют также разработки на других типах разъемов, наиболее известными из которых являются разъемы типов 110 и 210. Линии категории 7 при современном состоянии уровня техники могут быть реализованы только на кабеле с экранированными парами.

Линии электрической связи СКС должны быть собраны из кабелей и других компонентов с характеристиками не хуже той категории, на которую они рассчитаны. Данное правило имеет также и обратное действие в отношении категорий до 5е включительно: линия связи, собранная из компонентов определенной категории, поддерживает работу всех приложений своего и более низкого классов.

Стандарты ISO/IEC 11801 и TIA/EIA-568-A определяют, что линии связи СКС будут соответствовать требованиям определенной ими категории при соблюдении следующих трех условий:

1. технические характеристики всех кабелей, разъемов и соединительных шнуров этой линии соответствуют требованиям этой категории, или превышают их;
2. линия связи спроектирована с учетом требований стандартов (то есть соблюдены ограничения на длины кабелей, количество точек коммутации и т.д.);
3. монтаж выполнен в полном соответствии с требованиями стандартов.

Ограничения на длины кабелей и шнуров СКС.

Стандарты ISO/IEC 11801 и TIA/EIA 568 устанавливают ограничения на максимальные длины кабелей и соединительных шнуров горизонтальной и магистральных подсистем (табл.7).
Среда передачи сигнала Класс А Класс B Класс C Класс D Оптика
Симметричный кабель категории 3 2 км 200 м 100 м
Симметричный кабель категории 4 3 км 260 м 150 м
Симметричный кабель категории 5 3 км 260 м 160 м 100 м
Симметричный кабель 150 Ом 3 км 400 м 250 м 150 м
Многомодовый оптический кабель - - - - 2 км
Одномодовый оптический кабель - - - - 3 км

Таблица 7. Максимальные длины кабельных трактов в зависимости от типа кабеля и класса приложения.

Дополнительно еще раз подчеркнем, что максимальные длины электрических кабельных линий для передачи сигнала указанного класса приведены для случая построения этих линий из симметричного кабеля и других компонентов с категорией не ниже указанной.

Длина кабеля горизонтальной подсистемы установлена равной 90 м (плюс 10 м на соединительные шнуры). Выбор именно этого значения произведен, исходя из возможностей витой пары как направляющей системы электромагнитных колебаний передавать сигналы наиболее массовых (на момент принятия стандартов) высокоскоростных приложений типа Fast Ethernet. Учитывались достигнутый технический уровень элементной базы и применяемые схемотехнические решения приемопередатчиков современного сетевого оборудования. Не последнюю роль при выборе именно этого значения максимальной длины играли архитектурные особенности типовых офисных зданий.

В случае реализации горизонтальной разводки на волоконно-оптическом кабеле длина кабельной трассы ограничена величиной 90 м из тех соображений, что она гарантированно позволяет выполнить ограничения протокольного характера сетей Fast Ethernet по максимальному диаметру коллизионного домена.

Основным назначением подсистемы внутренних магистралей является объединение в единое целое технических помещений в пределах одного здания. Соответственно, максимальная длина кабеля такой магистрали устанавливается стандартами равной 500 м.

И наконец, подсистема внешних магистралей, которая объединяет отдельные здания, согласно стандарту ISO/IEC 11801 может включать в себя кабели максимальной длиной 1,5 км. Дополнительно оговаривается, что максимальная длина магистральных кабелей между кроссовой этажа и кроссовой внешних магистралей не может превышать 2000 м (500 м кабеля внутренней и 1500 м кабеля внешней магистрали) при условии применения коммутационных и оконечных шнуров стандартной длины. В случае использования одномодового кабеля указанное значение может быть увеличено до 3000 м. При современном состоянии уровня волоконно-оптической техники с использованием обычной серийной аппаратуры это расстояние может быть равным 100 и более километрам. Однако при необходимости обеспечения связи на столь большие расстояния стандартами предполагается, что для передачи информации будут использоваться линии и каналы связи общего пользования различных телекоммуникационных операторов.

Дополнительные варианты топологии СКС.

Горизонтальная подсистема СКС при ее реализации на кабелях из витых пар может быть построена по четырем различным схемам.

Наиболее часто применяется первая из них, которая образована непрерывным кабелем максимальной длиной 90 м, соединяющим информационную розетку ИР и коммутационную панель в кроссовой этажа КЭ. Во втором варианте тракт передачи образуется из кабелей двух различных типов, но с эквивалентными передаточными характеристиками. Эти кабели соединяются между собой в так называемой точке перехода ТП (transition point). Согласно международному стандарту ISO/IEC 11801 здесь возможны две комбинации типов таких кабелей: "многопарный + четырехпарный" и "круглый + плоский" с одинаковым количеством пар (на практике это четыре пары).

Точка перехода реализуется на обычном коммутационном оборудовании, однако его запрещается использовать для выполнения операций администрирования кабельной системы и для подключения активных сетевых устройств любого назначения. В соответствии с этим в точке перехода никогда не должны применяться коммутационные и оконечные шнуры.

Последние два варианта построения горизонтальной подсистемы СКС ориентированы, в первую очередь, на применение в так называемых открытых офисах (open offices или open space offices), то есть в рабочих помещениях большой площади, которые разделены на отдельные секции специализированной мебелью или легкими некапитальными перегородками. Общим отличительным признаком таких офисов являются частые перемещения сотрудников и изменения конфигураций рабочих мест. В открытых офисах могут применяться многопользовательские телекоммуникационные розетки MUTO (Multi-User Telecommunication Outlet) и консолидационные точки КТ (consolidation point). Оба варианта стандартизованы техническим бюллетенем TSB-75 и адаптируют рассмотренные выше решения на случай открытого офиса.

Под многопользовательской розеткой MUTO понимается розетка, которая обслуживает несколько пользователей. Такой элемент выделяется в отдельный вид оборудования и устанавливается на колоннах и стенах здания, под фальшполом, в напольных коробках и, достаточно редко, в пространстве между капитальными и подвесными потолками. Максимальная длина оконечного шнура, соединяющего розетку MUTO с сетевым оборудованием на рабочем месте не должна превышать 20 м (длина горизонтального кабеля при этом не должна превышать 70 м, а сумма длин коммутационных шнуров в кроссовой 7 м).

Таким образом, суммарная длина оконечного и коммутационного шнуров в открытом офисе может достигать 27 м против 10 м в случае обычного офиса, что сопровождается заметным увеличением гибкости кабельной системы. При этом за счет соответствующей корректировки длины горизонтального кабеля в сторону уменьшения максимальное суммарное затухание тракта передачи сигнала в обоих случаях оказывается одинаковым.

Консолидационная точка КТ в открытом офисе является прямым аналогом точки перехода традиционной топологии. От нее к отдельным розеткам рабочего места протягиваются короткие отрезки горизонтального кабеля, которые являются продолжением основного кабеля сегмента. Решения на основе КТ рекомендуется применять в тех случаях, когда перемещения сотрудников возможны, но не столь часты по сравнению с розетками MUTO.

Аналогично традиционной кабельной разводке в любой горизонтальной линии открытого офиса запрещается использование более одной точки перехода в виде розеток MUTO и КТ, а в консолидационной точке не допускается подключение активного оборудования и выполнения операций администрирования.

Отдельно отметим топологии СКС с централизованным администрированием, которые определены в техническом бюллетене TSB-72 и относятся к случаю построения разводки внутри одного здания полностью на оптическом кабеле. Основная идея, заложенная в этом документе, состоит в предоставлении проектировщику СКС возможности отказа в данной ситуации от жесткого деления кабельной разводки на горизонтальную подсистему и подсистему внутренних магистралей с их объединением в единое целое и переход, за счет этого, от двухуровневой звездообразной топологии к простой одноуровневой.

Применение принципа централизованного администрирования позволяет:

* значительно увеличить управляемость ЛВС за счет появления возможности формирования любых заранее заданных рабочих групп на физическом уровне без использования виртуальных соединений;
* сосредоточить все активное оборудование в одном месте, что увеличивает защищенность от несанкционированного доступа к информации, уменьшает потребности в высокоскоростных каналах и упрощает процедуру проведения эксплуатационных измерений;
* значительно сократить или даже полностью (в некоторых случаях) отказаться от выделенных помещений для кроссовых этажей.

Актуальность практического использования централизованного администрирования резко возросла в связи с массовым внедрением в широкую инженерную практику волоконно-оптической техники передачи сигналов, которая не накладывает на длины высокоскоростных каналов физического 90-метрового ограничения витой пары.

Принцип расщепления кабеля (Cable Sharing).

Основным типом кабеля горизонтальной подсистемы современной СКС является 4-парный симметричный кабель "витая пара". Большинство наиболее распространенных в настоящее время среднескоростных (Ethernet 10Base-T, Token Ring) и высокоскоростных (Fast Ethernet 100Base-TX, TP-PMD, ATM) приложений требуют для работы только две витых пары. Остальные две пары не используются и некоторыми типами сетевых интерфейсов просто замыкаются на землю, то есть для них являются фактически бесполезными. Уровень электрических характеристик горизонтальных кабелей, требуемый действующими редакциями стандартов, принципиально позволяет передавать по таким кабелям сигналы одновременно нескольких (двух, а в некоторых случаях трех или даже четырех) приложений с пренебрежимо малым уровнем влияния друг на друга. Подобное техническое решение по использованию горизонтального кабеля представляет собой адаптацию методов использования магистральных кабелей на область горизонтальной разводки и называется принципом разделения или расщепления кабеля (cable sharing). Это решение официально допускается для практического применения стандартами ISO/IEC 11801 и EN 50173.

Для практической реализации принципа расщепления кабеля разработан и внедрен в серийное производство достаточно большой набор различных специализированных элементов, которые могут быть разделены на следующие группы:

* Y-адаптеры, а также сдвоенные и строенные балуны;
* двойные адаптерные вставки;
* разветвительные шнуры;
* монтажные шнуры специального вида;
* сдвоенные и строенные розеточные модули, позволяющие выполнять на них разводку одного кабеля.

Все перечисленные выше решения, за исключением последних двух, позволяют, в случае необходимости, легко вернуться к стандартному 4-парному варианту организации горизонтального участка тракта передачи электрического сигнала, то есть не затрагивают свойство универсальности кабельной системы.

Стандарты не выдвигают никаких особых требований к оборудованию, используемому для реализации рассматриваемого принципа, за исключением применения отличительной маркировки розеток.

Использование обсуждаемого принципа организации СКС наиболее выгодно в сетях небольшого и среднего размера, в основном, по двум причинам:

* затраты на горизонтальную проводку составляют относительно большую величину - одновременная передача по одному кабелю сигналов двух приложений обеспечивает заметную экономию капитальных финансовых затрат на организацию сети;
* в таких сетях задача применения сверхвысокоскоростных приложений типа Gigabit Ethernet, требующих для своей работы одновременно четырех пар, является существенно менее актуальной из-за относительно меньшего объема передаваемой информации; в таких условиях ожидаемая проблема нехватки тракта передачи сигналов отодвигается на неопределенно далекую перспективу.

Отметим, что принцип расщепления кабеля получил достаточно большое распространение в некоторых европейских странах, где он используется существенно чаще по сравнению с решениями на основе двухпарных кабелей. Однако данное решение мало популярно в Российской Федерации хотя бы по следующим причинам:

* значительная доля российских СКС строится в соответствии с требованиями стандарта TIA/EIA-568-A (-B), который не допускает одновременную передачу сигналов двух приложений по одному горизонтальному кабелю;
* принцип расщепления кабеля наиболее эффективен в системах с индивидуальной экранировкой отдельных пар, которые по причинам экономического характера устанавливается существенно реже систем без такой экранировки (большая стоимость элементной базы и трудоемкость монтажа не компенсируется экономией затрат за счет меньшего количества прокладываемых кабелей).

Относительно большое распространение в нашей стране имеет только решение на основе Y-адаптера или функционально аналогичной ему адаптерной вставки некоторых СКС, которые применяются для передачи по одному кабелю сигналов Ethernet 10Base-T и аналогового телефона в небольших и достаточно часто несертифицируемых сетях.

Гарантийная поддержка современных СКС.

Современная СКС является сложным высокотехнологичным продуктом, рассчитанным на эксплуатацию в течение продолжительного времени. В этой связи особо важное значение приобретает система гарантий производителя СКС на свою продукцию и установленную систему. Действующие редакции стандартов не предписывают каких-либо жестких правил в этой области, и только стандарт ISO/IEC 11801 рекомендует устанавливать продолжительность гарантии не менее чем 10 лет. Указанное значение выбрано не в последнюю очередь из-за того, что среднестатистический срок между двумя косметическими ремонтами в зданиях офисного типа, после которого обычно производится перекладка кабельной системы, составляет примерно 9 лет.

В настоящее время производители СКС применяют различные виды гарантий. Их можно разделить на четыре основных группы:

1. Гарантия на компоненты.
2. Системная гарантия.
3. Гарантия работы приложений.
4. Обобщенная гарантия:
1. Расширение списка приложений.
2. Увеличение длины базовой линии.

Классическим видом гарантии является гарантия на компоненты, или базовая гарантия. Она означает, что все компоненты кабельной системы не имеют производственных дефектов и при использовании по назначению в соответствии с ТУ не потеряют своих потребительских качеств на протяжении определенного периода времени с момента покупки. Обычный срок гарантии на компоненты составляет пять лет, хотя в последнее время наметилась тенденция увеличения этого значения. Условием получения базовой гарантии является приобретение компонента по официальным каналам в порядке, установленном производителем СКС.

Расширенная, или системная, гарантия предоставляется на спроектированную и установленную по всем правилам СКС. Под ней понимается соответствие характеристик смонтированной системы требованиям стандартов. Основная масса производителей определяет срок этого вида гарантии на системы категории 5 в 15-16 лет. Системам, характеристики которых превышают требования категории 5, гарантийный срок обычно увеличивается до 20 лет, а некоторыми производителями даже до 25 лет. Основные принципы предоставления системной гарантии могут быть сформулированы следующим образом:

* применение в составе системы исключительно компонентов, официально разрешенных для установки в данную конкретную СКС. На использование компонентов, не входящих в официальный перечень разрешенных, в каждом конкретном случае должно быть получено отдельное разрешение производителя;
* построение системы в полном соответствии с требованиями действующих редакций стандартов, то есть без превышения длины кабельных трасс и шнуров, количества соединителей в тракте и т.д.;
* соответствие количества циклов соединения-разъединения разъемов значению, задаваемому стандартами;
* проектирование и построение системы только прошедшим соответствующее обучение и авторизованным персоналом; все изменения и дополнения также должны производиться только авторизованным персоналом.

Некоторые производители СКС выдвигают также дополнительные требования, сводящиеся к необходимости предоставления протоколов измерений, использованию для тестирования только измерительных приборов из определенного перечня и т.д.

Из приведенного выше несложно убедиться в том, что системная гарантия включает в себя также базовую и даже усиливает ее в смысле увеличения гарантийного срока. Кажущаяся на первый взгляд нелогичность этого положения (гарантия на всю систему целиком превышает по продолжительности гарантию на любой ее компонент) объясняется тем, что кабель в смонтированной системе не подвергается значительным механическим нагрузкам в процессе прокладки, то есть гарантированно эксплуатируется в существенно менее жестких условиях.

Наконец, под гарантией работы приложений понимается способность правильно смонтированной и установленной СКС (т.е. СКС, уже имеющей системную гарантию) поддерживать работу тех или иных приложений.

В конце 90-х годов в среде производителей СКС четко наметилась тенденция предоставления специальных вариантов гарантии работы приложений, которые назовем в данном случае обобщенной гарантией. Гарантия этого вида юридически закрепляет улучшение производителей определенных параметров предлагаемого решения свыше уровня стандартов. Гарантии этой группы имеют две разновидности. Первая из них основана на списке приложений, куда часто включаются такие из них, которые формально не могут поддерживаться стандартной СКС данной конкретной категории. Иногда она предоставляется на поддержку функционирования любого приложения, аппаратура которого изначально спроектирована для работы по СКС той или иной категории. Вторая разновидность расширенной гарантии предполагает возможность увеличения длины так называемого тракта или канала свыше задаваемых стандартом 100 м для конкретных приложений из определенного списка.

Изложенное показывает, что в общем случае гарантия работы приложений показывает потребителю лишь уровень запасов, который разработчик конкретной СКС заложил в свою систему, то есть степень превышения требований стандартов, причем применительно только к какому-либо конкретному приложению или их более или менее обширной группе.

Документом, подтверждающим наличие у СКС гарантии того или иного вида, является сертификат производителя установленного им образца. Сертификат может выдаваться как на собственно СКС, установленную по конкретному адресу, так и владельцу СКС. К сертификату прикладывается регистрационный документ с более или менее полным описанием системы, который может быть дополнен схематическим планом ее стркутуры, а также результатами ее инструментального тестирования (если эта процедура проводится согласно правилам установки СКС).

Гарантийный ремонт обычно выполняется компанией-инсталлятором конкретной СКС, что в некоторых случаях является одним из условий заключения соответствующего партнерского соглашения между производителем СКС и системным интегратором. В тех случаях, когда эта компания в силу каких-либо причин не может выполнить работы, производитель поручает их проведение другому местному партнеру или же выполняет их самостоятельно.

Гарантийный ремонт не производится при неправильной эксплуатации, превышении нагрузки, механических повреждениях и повреждениях в результате стихийных бедствий, применением неразрешенных компонентов и в других аналогичных случаях.

Оптика "по горизонтали": В связи с ростом требований, предъявляемых новыми сетевыми приложениями, становится все более актуальным применение оптоволоконных технологий в структурированных кабельных системах (СКС). Оптоволокно имеет характеристики, намного превышающие требования сегодняшних стандартов скорости Ethernet (100 Мбит/с) для подключения рабочих мест, и позволяет легко переходить на новые протоколы передачи данных, такие, как, например, 1 и 10 Gigabit Ethernet или высокоскоростной ATM.


В связи с ростом требований, предъявляемых новыми сетевыми приложениями, становится все более актуальным применение оптоволоконных технологий в структурированных кабельных системах (СКС).

Оптоволокно имеет характеристики, намного превышающие требования сегодняшних стандартов скорости Ethernet (100 Мбит/с) для подключения рабочих мест, и позволяет легко переходить на новые протоколы передачи данных, такие, как, например, 1 и 10 Gigabit Ethernet или высокоскоростной ATM.

Говоря о возможностях модернизации, следует отметить тот факт, что свойства оптического волокна практически не зависят от скорости передачи данных в сети, поскольку отсутствуют механизмы (например, перекрестные помехи), которые приводят к деградации свойств оптоволокна с увеличением скорости сетевых протоколов. Как только оптическое волокно установлено и его параметры протестированы на соответствие стандартам, кабельный канал может работать на скоростях 1, 10, 100, 500, 1000 Мбит/с или 10 Гбит/с.

Это дает гарантию того, что кабельная инфраструктура, установленная сегодня, сможет обеспечивать работу любых сетевых технологий на протяжении следующих 10-15 лет, и даже более.

Еще одним неоспоримым преимуществом оптоволокна является "иммунитет" к различным электромагнитным помехам и отсутствие собственного радиочастотного излучения, что значительно повышает безопасность таких систем - снимать информацию с оптоволоконных кабелей намного дороже и сложнее, чем с обычной витой пары, и это возможно только при непосредственном "вмешательстве" в СКС.

А так ли дорога оптика?

Зачастую у специалистов бытует мнение, что оптоволоконные решения значительно дороже медных. Попытаемся выяснить, так это или нет, сравнив оптические решения компании 3M Volution с типовой экранированной системой 6-й категории, обладающей наиболее близкими многомодовой оптике характеристиками.

В ориентировочный расчет стоимости типовой горизонтальной подсистемы была включена цена порта 24-портовой коммутационной панели (в расчете на одного абонента), абонентских и коммутационных шнуров, абонентского модуля, а также стоимость горизонтального кабеля за 100 метров (см. таблицу).

Расчет стоимости абонентского порта СКС для "меди" 6-й категории и оптики.

Этот простой расчет показал, что стоимость оптоволоконного решения всего на 35% больше, чем решения для витой пары 6-й категории, так что слухи об огромной дороговизне оптики несколько преувеличены. Причем стоимость основных оптических компонентов на сегодня сравнима или даже ниже, чем для экранированных систем 6-й категории, но, к сожалению, готовые оптические коммутационные и абонентские шнуры пока что в несколько раз дороже медных аналогов. Однако если по каким-либо причинам протяженность абонентских каналов в горизонтальной подсистеме превышает 100 м, оптике просто нет альтернативы.

Строим оптическую СКС

За последнее десятилетие в специальную терминологию прочно вошло новое определение - "структурированная кабельная система". Такая система подразумевает отказ от различных фирменных кабельных решений, широко распространенных в прошлом, и обеспечивает взаимодействие различных сетевых устройств - коммутаторов, концентраторов и маршрутизаторов независимо от их фирмы-изготовителя.


Североамериканский стандарт TIA/EIA-568-B, который определяет требования к структурированным кабельным системам, находящимся внутри, а также между зданиями и их отдельными элементами, содержит спецификации как на медную, так и на оптоволоконную горизонтальную кабельную систему. Ограничения на максимальную длину оптической горизонтальной системы (100 м) в стандарте TIA/EIA-568-B (см. таблицу слева) определяются характеристиками медных линий.

Несколько комитетов, например, TIA/EIA-568-В.З, расширили границы применения для оптической горизонтальной подсистемы, исходя из ее потенциально лучших параметров по сравнению с медными системами.

Данный комитет пытается применить большую дальность работы и полосу пропускания оптических систем для создания более эффективных кабельных систем. В последнее время в СКС все чаще используются такие термины, как "централизованная кабельная система" (centralized cabling), "многопользовательская розетка" (multi-user outlet) и "зоновая кабельная система" (zone cabling).

Какие же понятия стоят за этими терминами и какова их роль при построении высокопроизводительных и экономически эффективных оптических СКС? Рассмотрим каждую из конкретных схем построения оптических СКС с учетом их преимуществ и недостатков.

Независимо от того, используется оптическая или медная СКС, стандарт TIA/EIA-568-B (на схеме выше) предполагает наличие нескольких телекоммуникационных пунктов, расположенных по всему зданию. Кабельная сеть может быть либо вертикальной с несколькими кроссовыми помещениями, расположенными на каждом этаже, либо горизонтальной с набором телекоммуникационных помещений, расположенных по всей площади предприятия.

Основной топологией кабельной системы при этом является "звезда" с максимальной функциональностью в центре - главном распределительном пункте - MDC (main distribution centre). MDC подключен через оптоволоконную магистраль или к промежуточным распределительным центрам - ЮС (intermediate distribution centres), если магистраль связывает несколько зданий, или к телекоммуникационным пунктам - ТС (telecommunications closets). Типовое расстояние от пользователей до TC составляет 100 м как для медного, так и для оптического кабеля.

Обычно в телекоммуникационных пунктах располагается сетевое оборудование, которое разделяет ЛВС этажа и общую сеть здания. TC также содержат элементы управления и вспомогательные средства СКС - оптические и электрические кроссы, кабельные организаторы и т.д.

Учитывая значительный запас дальности у оптических кабелей (по сравнению с электрическими), для увеличения эффективности и уменьшения стоимости эксплуатации горизонтальная распределительная система может быть перестроена таким образом, что все горизонтальные подсистемы будут объединены и подключены к общему телекоммуникационному пункту. В этом случае к нему через оптоволоконные кабели будут подсоединяться все пользователи.

Поскольку многомодовые оптоволоконные кабельные системы поддерживают дальность передачи данных вплоть до 300 м для любых существующих приложений, можно отказаться от использования отдельных телекоммуникационных пунктов на каждом этаже. При такой структуре кабельной системы значительно упрощается управление ее элементами и уменьшается число возможных точек отказа.

Снижение числа телекоммуникационных пунктов сокращает эксплуатационные расходы и экономит площадь - уменьшается число помещений, в которых необходимо обеспечить гарантированное электропитание, отопление, вентиляцию и кондиционирование.

При этом также значительно облегчается тестирование, обнаружение неисправностей и ведение документации на СКС, становится возможным управление конфигурацией кабельной системы с помощью ПО, а не посредством переключения коммутационных шнуров. Также данная система позволяет легко интегрировать в существующую СКС новую кабельную архитектуру, разработанную для открытых офисов (TIA/EIA TSB 75, ISO/IEC 11801).

Структурированная кабельная система - телекоммуникационная инфраструктура здания (комплекса зданий), спроектированная, смонтированная и документированная в соответствии с общепризнанными международными и национальными стандартами. Преимущества СКС над обычными кабельными системами.Со схемами и описаниями решений построения Структурированных кабельных систем (СКС) можно ознакомиться в разделе Решения сайта Инсотел .

За последнее десятилетие в специальную терминологию прочно вошло новое определение - "структурированная кабельная система". Такая система подразумевает отказ от различных фирменных кабельных решений, широко распространенных в прошлом, и обеспечивает взаимодействие различных сетевых устройств - коммутаторов, концентраторов и маршрутизаторов независимо от их фирмы-изготовителя.
В связи с ростом требований, предъявляемых новыми сетевыми приложениями, становится все более актуальным применение оптоволоконных технологий в структурированных кабельных системах. Каковы же преимущества и особенности использования оптических технологий в горизонтальной кабельной подсистеме, а также на рабочих местах пользователей?

Проанализировав изменения сетевых технологий за последние 5 лет, легко заметить, что медные стандарты СКС отставали от гонки "сетевых вооружений". Не успев инсталлировать СКС третьей категории, предприятиям приходилось переходить на пятую, сейчас уже и на шестую, а не за горами использование седьмой категории.

Очевидно, развитие сетевых технологий не остановится на достигнутом: гигабит на рабочее место вскоре станет стандартом де-факто, а впоследствии и де-юре, и для ЛВС (локальных вычислительных сетей) крупного или даже среднего предприятия 10 Гбит/с Etnernet не будет редкостью.

Поэтому очень важно использовать такую кабельную систему, которая позволила бы легко справляться с возрастающими скоростями сетевых приложений на протяжении как минимум 10 лет - именно такой минимальный срок службы СКС определен международными стандартами.

Более того, при изменении стандартов на протоколы ЛВС необходимо избегать повторной прокладки новых кабелей, которая раньше была причиной значительных расходов на эксплуатацию СКС и просто не допустима в будущем.

Только одна среда передачи в СКС удовлетворяет данным требованиям - оптика. Оптические кабели используются в телекоммуникационных сетях уже более 25 лет, в последнее время они также находят широкое применение в кабельном телевидении и ЛВС.

В ЛВС они в основном используются для построения магистральных кабельных каналов между зданиями и в самих зданиях, обеспечивая при этом высокую скорость передачи данных между сегментами этих сетей. Однако развитие современных сетевых технологий актуализирует использование оптоволокна как основной среды для подключения непосредственно пользователей.

Кабельная система - важная составляющая ИТ инфраструктуры предприятия. Надёжность и работоспособность информационной инфраструктуры во многом зависит от параметров кабельной системы.

В понятие кабельной системы входит все пассивное оборудование, которое объединяет аппаратный комплекс ИТ инфраструктуры здания на физическом уровне.

Структурированная кабельная система (СКС) - телекоммуникационная инфраструктура здания (комплекса зданий), спроектированная, смонтированная и документированная в соответствии с общепризнанными международными и национальными стандартами.

Общие принципы проектирования СКС подразумевают наличие у структурированных кабельных систем следующих свойств:

* универсальность - возможность использования однотипных каналов для передачи сигналов различных систем (данные, голос, видео);
* совместимость со стандартным активным оборудованием любых производителей;
* избыточность - наличие достаточного количества резервных каналов связи, необходимых для расширения системы в процессе эксплуатации;
* гибкость - простота и удобство обслуживания системы при внесении изменений в ее конфигурацию;
* надежность - способность системы сохранять рабочие параметры в заданных диапазонах в течение всего срока эксплуатации / гарантийного срока;

Построение структурированных кабельных систем дает заказчикам выигрыш в функциональности, надежности, снижает стоимость эксплуатации, что, в свою очередь, создает базу для повышения эффективности функционирования любой современной организации.

Составные элементы Структурированной кабельной системы (СКС)

В соответствии с международным стандартом ISO/IEC 11801:2002 структурированная кабельная система состоит из следующих функциональных элементов:

* распределительный пункт комплекса зданий;
* магистраль комплекса зданий;
* распределительный пункт здания;
* магистраль здания;
* распределительный пункт этажа;
* горизонтальная кабельная система;
* точка перехода;
* кабели для точки перехода;
* многопортовая телекоммуникационная розетка;
* телекоммуникационная розетка.

Объединяясь в единую систему, эти функциональные элементы образуют несколько кабельных подсистем.

Кабельные подсистемы СКС:

1. магистральная подсистема комплекса зданий;
2. магистральная подсистема здания;
3. горизонтальная подсистема;
4. рабочая области.

Преимущества СКС над обычными кабельными системами:

* для передачи данных, голоса и видеосигнала используется единая кабельная система;
* использование универсальных розеток на рабочих местах позволяет подключать к ним различные виды оборудования;
* оправдывают капиталовложения за счет длительного использования и эксплуатации сети;
* обладают модульностью и возможностями внесения изменений и наращивания без замены всей существующей сети;
* допускают одновременное использование нескольких различных сетевых протоколов;
* не зависят от изменений технологий и поставщика оборудования;
используют стандартные компоненты и материалы;
* допускают управление и администрирование минимальным количеством обслуживающего персонала;
* позволяют комбинировать в одной сети волоконно-оптический и медный кабель.

Лучшие статьи по теме