Гид компьютерного мира - Информационный портал

Пространственные и динамические модели. Пространственные модели

Динамический объект - это физическое тело, техническое устройство или процесс, имеющее входы, точки возможного приложения внешних воздействий, и воспринимающие эти воздействия, и выходы, точки, значения физических величин в которых характеризуют состояние объекта. Объект способен реагировать на внешние воздействия изменением своего внутреннего состояния и выходных величин, характеризующих его состояние. Воздействие на объект, и его реакция в общем случае изменяются с течением времени, они наблюдаемы, т.е. могут быть измерены соответствующими приборами. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов.

Если вчитаться и вдуматься в приведенное выше нестрогое определение, можно увидеть, что отдельно динамический объект в "чистом" виде, как вещь в себе, не существует: для описания объекта модель должна содержать еще и 4 источника воздействий (генераторы):

Среду и механизм подачи на него этих воздействий

Объект должен иметь протяженность в пространств

Функционировать во времени

В модели должны быть измерительные устройства.

Воздействием на объект может быть некоторая физическая величина: сила, температура, давление, электрическое напряжение и другие физические величины или совокупность нескольких величин, а реакцией, откликом объекта на воздействие, может быть движение в пространстве, например смещение или скорость, изменение температуры, силы тока и др.

Для линейных моделей динамических объектов справедлив принцип суперпозиции (наложения), т.е. реакция на совокупность воздействий равна сумме реакций на каждое из них, а масштабному изменению воздействия соответствует пропорциональное изменение реакции на него. Одно воздействие может быть приложено к нескольким объектам или нескольким элементам объекта.

Понятие динамический объект содержит и выражает причинно-следственную связь между воздействием на него и его реакцией. Например, между силой, приложенной к массивному телу, и его положением и движением, между электрическим напряжением, приложенным к элементу, и током, протекающим в нем.

В общем случае динамические объекты являются нелинейными, в том числе они могут обладать и дискретностью, например, изменять быстро структуру при достижении воздействием некоторого уровня. Но обычно большую часть времени функционирования динамические объекты непрерывны во времени и при малых сигналах они линейны. Поэтому ниже основное внимание будет уделено именно линейным непрерывным динамическим объектам.

Пример непрерывности: автомобиль, двигающийся по дороге - непрерывно функционирующий во времени объект, его положение зависит от времени непрерывно. Значительную часть времени автомобиль может рассматриваться как линейный объект, объект, функционирующий в линейном режиме. И только при авариях, столкновениях, когда, например, автомобиль разрушается, требуется описание его как нелинейного объекта.

Линейность и непрерывность во времени выходной величины объекта просто удобный частный, но важный случай, позволяющий достаточно просто рассмотреть значительное число свойств динамического объекта.

С другой стороны, если объект характеризуется процессами, протекающими в разных масштабах времени, то во многих случаях допустимо и полезно заменить наибыстрейшие процессы их дискретным во времени изменением.

Настоящая работа посвящена, прежде всего, линейным моделям динамических объектов при детерминированных воздействиях. Гладкие детерминированные воздействия произвольного вида могут быть генерированы путем дискретного, сравнительно редкого аддитивного действия на младшие производные воздействия дозированными дельта - функциями. Такие модели состоятельны при сравнительно малых воздействиях для весьма широкого класса реальных объектов. Например, именно так формируются сигналы управления в компьютерных играх, имитирующих управление автомобилем или самолетом с клавиатуры. Случайные воздействия пока остаются за рамками рассмотрения.

Состоятельность линейной модели динамического объекта определяется, в частности тем, что является ли его выходная величина достаточно гладкой, т.е. является ли она и несколько ее младших производных по времени непрерывными. Дело в том, что выходные величины реальных объектов изменяются достаточно плавно во времени. Например, самолет не может мгновенно переместиться из одной точки пространства в другую. Более того он, как и любое массивное тело, не может скачком изменить свою скорость, на это потребовалась бы бесконечная мощность. Но ускорение самолета или автомобиля может изменяться скачком.

Понятие динамический объект вовсе не всесторонне определяет физический объект. Например, описание автомобиля как динамического объекта позволяет ответить на вопросы, как быстро он разгоняется и тормозит, как плавно двигается по неровной дороге и кочкам, какие воздействия будут испытывать водитель и пассажиры машины при движении по дороге, на какую гору он может подняться и т.п. Но в такой модели безразлично, какой цвет у автомобиля, не важна его цена и др., постольку, они не влияют на разгон автомобиля. Модель должна отражать главные с точки зрения некоторого критерия или совокупности критериев свойства моделируемого объекта и пренебрегать второстепенными его свойствами. Иначе она будет чрезмерно сложной, что затруднит анализ интересующих исследователя свойств.

С дугой стороны, если исследователя интересует именно изменение во времени цвета автомобиля, вызываемое различными факторами, например солнечным светом или старением, то и для этого случая может быть составлено и решено соответствующее дифференциальное уравнение.

Реальные объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействия от некоторого источника, но и сами воздействуют на этот источник, противодействуют ему. Выходная величина объекта управления во многих случаях является входной для другого, последующего динамического объекта, которая также, в свою очередь, может влиять на режим работы объекта. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.

Часто, при решении многих задач, рассматривается поведение динамического объекта только во времени, а его пространственные характеристики, в случаях, если они непосредственно не интересуют исследователя, не рассматриваются и не учитываются, за исключением упрощенного учета задержки сигнала, которая может быть обусловлена временем распространения воздействия в пространстве от источника к приемнику.

Динамические объекты описываются дифференциальными уравнениями (системой дифференциальных уравнений). Во многих практически важных случаях это линейное, обыкновенное дифференциальное уравнение (ОДУ) или система ОДУ. Многообразие видов динамических объектов определяет высокую значимость дифференциальных уравнений как универсального математического аппарата их описания, позволяющего проводить теоретические исследования (анализ) этих объектов и на основе такого анализа конструировать модели и строить полезные для людей системы, приборы и устройства, объяснять устройство окружающего нас мира, по крайней мере, в масштабах макромира (не микро- и не мега-).

Модель динамического объекта состоятельна, если она адекватна, соответствует реальному динамическому объекту. Это соответствие ограничивается некоторой пространственно-временной областью и диапазоном воздействий.

Модель динамического объекта реализуема, если можно построить реальный объект, поведение которого под влиянием воздействий в некоторой пространственно-временной области и при некотором классе и диапазоне входных воздействий соответствует поведению модели.

Широта классов, многообразие структур динамических объектов может вызвать предположение, что все они вместе обладают неисчислимым набором свойств. Однако попытка охватить и понять эти свойства, и принципы работы динамических объектов, во всем их многообразии вовсе не столь безнадежна.

Дело в том, что если динамические объекты адекватно описываются дифференциальными уравнениями, а это именно так, то совокупность свойств, характеризующих динамический объект любого рода, определяется совокупностью свойств характеризующих его дифференциальное уравнение. Можно утверждать что, по крайней мере, для линейных объектов таких основных свойств существует довольно ограниченное и сравнительно небольшое число, а поэтому ограничен и набор основных свойств динамических объектов. Опираясь на эти свойства и комбинируя элементы, обладающие ими, можно построить динамические объекты с самыми разнообразными характеристиками.

Итак, основные свойства динамических объектов выведены теоретически из их дифференциальных уравнений и соотнесены с поведением соответствующих реальных объектов.

Динамический объект - это объект, воспринимающий изменяющиеся во времени внешние воздействия и реагирующий на них изменением выходной величины. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов. Иерархия объектов ограничена снизу простейшими моделями и опирается на их свойства.

Воздействием на объект, как и его реакцией, являются физические, измеряемые величины, это может быть и совокупность физических величин, математически описываемая векторами.

При описании динамических объектов с помощью дифференциальных уравнений неявно предполагается, что каждый элемент динамического объекта получает и расходует столько энергии (такую мощность), сколько ему требуется для нормальной работы в соответствии с его назначением по отклику на поступающие воздействия. Часть этой энергии объект может получать от входного воздействия и это описывается дифференциальным уравнением явно, другая часть может поступать от сторонних источников и в дифференциальном уравнении не фигурировать. Такой подход существенно упрощает анализ модели, не искажая свойств элементов и всего объекта. При необходимости процесс обмена энергией с внешней средой может быть подробно описан в явной форме и это будут также дифференциальные и алгебраические уравнения.

В некоторых частных случаях источником всей энергии (мощности) для выходного сигнала объекта является входное воздействие: рычаг, разгон массивного тела силой, пассивная электрическая цепь и др.

В общем случае воздействие может рассматриваться как управляющее потоками энергии для получения необходимой мощности выходного сигнала: усилитель синусоидального сигнала, просто идеальный усилитель и др.

Динамические объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействие от его источника, но и сами воздействуют на этот

Классификация видов моделирования может быть проведена по разным основаниям. Модели можно различать по ряду признаков: характеру моделируемых объектов, сферам приложения, глубине моделирования. Рассмотрим 2 варианта классификации. Первый вариант классификации. По глубине моделирования методы моделирования делятся на две группы: материальное (предметное) и идеальное моделирование. Материальное моделирование основано на материальной аналогии объекта и модели. Оно осуществляется с помощью воспроизведения основных геометрических, физических или функциональных характеристик изучаемого объекта. Частным случаем материального моделирования является физическое моделирование. Частным случаем физического моделирования является аналоговое моделирование. Оно основано на аналогии явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими соотношениями. Образец аналогового моделирования – изучение механических колебаний (например, упругой балки) с помощью электрической системы, описываемой теми же дифференциальными уравнениями. Так как эксперименты с электрической системой обычно проще и дешевле, она исследуется в качестве аналога механической системы (например, при изучении колебаний мостов).

Идеальное моделирование основано на идеальной (мысленной) аналогии. В экономических исследованиях (на высоком уровне их проведения, а не на субъективных желаниях отдельных руководителей) это основной вид моделирования. Идеальное моделирование, в свою очередь, разбивается на два подкласса: знаковое (формализованное) и интуитивное моделирование. При знаковом моделировании моделями служат схемы, графики, чертежи, формулы. Важнейшим видом знакового моделирования является математическое моделирование, осуществляемое средствами логико-математических построений.

Интуитивное моделирование встречается в тех областях науки и практики, где познавательный процесс находится на начальной стадии или имеют место очень сложные системные взаимосвязи. Такие исследования называют мысленными экспериментами. В экономике в основном применяется знаковое или интуитивное моделирование; оно описывает мировоззрение ученых или практический опыт работников в сфере управления ею. Второй вариант классификации приведен на рис. 1.3.В соответствии с классификационным признаком полноты моделирование делится на полное, неполное и приближенное. При полном моделировании модели идентичны объекту во времени и пространстве. Для неполного моделирования эта идентичность не сохраняется. В основе приближенного моделирования лежит подобие, при котором некоторые стороны реального объекта не моделируются совсем. Теория подобия утверждает, что абсолютное подобие возможно лишь при замене одного объекта другим точно таким же. Поэтому при моделировании абсолютное подобие не имеет места. Исследователи стремятся к тому, чтобы модель хорошо отображала только исследуемый аспект системы. Например, для оценки помехоустойчивости дискретных каналов передачи информации функциональная и информационная модели системы могут не разрабатываться. Для достижения цели моделирования вполне достаточна событийная модель, описываемая матрицей условных вероятностей ||рij|| переходов i-го символа алфавита j-й.В зависимости от типа носителя и сигнатуры модели различаются следующие виды моделирования: детерминированное и стохастическое, статическое и динамическое, дискретное, непрерывное и дискретно-непрерывное. Детерминированное моделирование отображает процессы, в которых предполагается отсутствие случайных воздействий. Стохастическое моделирование учитывает вероятностные процессы и события. Статическое моделирование служит для описания состояния объекта в фиксированный момент времени, а динамическое - для исследования объекта во времени. При этом оперируют аналоговыми (непрерывными), дискретными и смешанными моделями. В зависимости от формы реализации носителя моделирование классифицируется на мысленное и реальное. Мысленное моделирование применяется тогда, когда модели не реализуемы в заданном интервале времени либо отсутствуют условия для их физического создания (например, ситуация микромира). Мысленное моделирование реальных систем реализуется в виде наглядного, символического и математического. Для представления функциональных, информационных и событийных моделей этого вида моделирования разработано значительное количество средств и методов. При наглядном моделировании на базе представлений человека о реальных объектах создаются наглядные модели, отображающие явления и процессы, протекающие в объекте. Примером таких моделей являются учебные плакаты, рисунки, схемы, диаграммы. В основу гипотетического моделирования закладывается гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Этот вид моделирования используется, когда знаний об объекте недостаточно для построения формальных моделей.

Динамическое моделирование – многошаговый процесс, каждый шаг соответствует поведению экономической системы у определенный временный период. Каждый текущий шаг получает результаты предыдущего шага, который по определенным правилам определяет текущий результат и формирует данные для следующего шага.

Таким образом, динамическая модель в ускоренном режиме позволяет исследовать развития сложной экономической системы, скажем, предприятия, на протяжении определенного периода планирования в условиях изменения ресурсного обеспечения (сырья, кадров, финансов, техники), и получение результаты представить у соответствующему плане развития предприятия на заданный период.

Для решения динамических задач оптимизации в математическом программировании сформировался соответствующий класс моделей под названием динамическое программирование, его основателем стал известный американский математик Р. Беллман. Им предложен специальный метод решения задача этого класса на основе «принципа оптимальности», согласно которого оптимальное решение задачи находится путем ее разбиения на n этапов, каждый с которых представляет подзадачу относительно одной переменной. Расчет выполняется таким образом, что оптимальный результат одной подзадачи является исходными данными для следующей подзадачи с учетом уравнений и ограничений связи между ними, результат последней из них является результатом всей задачи. Общим для всех моделей этой категории является то, что текущие управляющие решения "проявляются" как в период, относящийся непосредственно к моменту принятия решения, так и в последующие периоды. Следовательно, наиболее важные экономические последствия проявляются в разные периоды, а не только в течение одного периода. Такого рода экономические последствия, как правило, оказываются существенными в тех случаях, когда речь идет об управляющих решениях, связанных с возможностью новых капиталовложений, увеличения производственных мощностей или обучения персонала с целью. создания предпосылок для увеличения прибыльности или сокращения издержек в последующие периоды.

Типичными областями применения моделей динамического программирования при принятии решений являются:

Разработка правил управления запасами, устанавливающих момент пополнения запасов и размер пополняющего заказа.

Разработка принципов календарного планирования производства и выравнивания занятости в условиях колеблющегося спроса на продукцию.

Определение необходимого объема запасных частей, гарантирующего эффективное использование дорогостоящего оборудования.

Распределение дефицитных капитальных вложений между возможными новыми направлениями их использования.

В задачах, решаемых методом динамического программирования, значение целевой функции (оптимизируемого критерия) для всего процесса получают простым суммированием частных значений fi(x) того же критерия на отдельных шагах, то есть

Если критерий (или функция) f(x) обладает этим свойством, то его называют аддитивным (аддитивной).

Алгоритм динамического программирования

1. На выбранном шаге задаем набор (определяемый условиями-ограничениями) значений переменной, характеризующей последний шаг, возможные состояния системы на предпоследнем шаге. Для каждого возможного состояния и каждого значения выбранной переменной вычисляем значения целевой функции. Из них для каждого исхода предпоследнего шага выбираем оптимальные значения целевой функции и соответствующие им значения рассматриваемой переменной. Для каждого исхода предпоследнего шага запоминаем оптимальное значение переменной (или несколько значений, если таких значений больше одного) и соответствующее значение целевой функции. Получаем и фиксируем соответствующую таблицу.

2. Переходим к оптимизации на этапе, предшествующем предыдущему (движение "вспять"), отыскивая оптимальное значение новой переменной при фиксированных найденных ранее оптимальных значениях следующих переменных. Оптимальное значение целевой функции на последующих шагах (при оптимальных значениях последующих переменных) считываем из предыдущей таблицы. Если новая переменная характеризует первый шаг, то переходим к п.З. В противном случае повторяем п.2 для следующей переменной.

З. При данном в задаче исходном условии для каждого возможного значения первой переменной вычисляем значение целевой функции. Выбираем оптимальное значение целевой функции, соответствующее оптимальному(ым) значению(иям) первой переменной.

4. При известном оптимальном значении первой переменной определяем исходные данные для следующего (второго) шага и по последней таблице - оптимальное(ые) значение(ия) следующей (второй) переменной.

5. Если следующая переменная не характеризует последний шаг, то переходим к п.4.Иначе переходим к п.6.

6.Формируем (выписываем) оптимальное решение.


Список использованной литературы

1. Microsoft Office 2010. Самоучитель. Ю. Стоцкий, А. Васильев, И. Телина. Питер. 2011, - 432 с.

2. Фигурнов В.Э. IBM PC для пользователя. Изд-е 7-е. - М.: Инфра-М, 1995.

3. Левин А. Самоучитель работы на компьютере. М. : Нолидж, 1998, - 624 с.

4. Информатика: практикум по технологии работы на персональном компьютере /Под ред. проф. Н.В.Макаровой - М. : Финансы и статистика, 1997 г. - 384с.

5. Информатика: Учебник / Под ред. проф. Н.В. Макаровой - М. : Финансы истатистика, 1997 г. - 768 с.


Похожая информация.


Информации

Особенности пространственно-временной

СВЯЗИ ПОКАЗАТЕЛЕЙ

МНОГОФАКТОРНЫЕ ДИНАМИЧЕСКИЕ МОДЕЛИ

Многофакторные динамические модели связи показателей строятся по пространственно-временным выборкам , которые представляют собой множество данных о значениях признаков совокупности объектов за ряд периодов (моментов) времени.

Пространственные выборки формируются путем объединения за ряд лет (периодов) пространственных выборок, т.е. совокупности объектов, относящихся к одинаковым периодам времени. Используются в случае небольших выборок, т.е. краткой предыстории развития объекта.

Динамические выборки образуются посредством объединения динамических рядов отдельных объектов в случае длительной предыстории , т.е. больших выборок.

Классификация способов формирования выборок условна, т.к. зависит от цели моделирования, от устойчивости выявленных закономерностей, от степени однородности объектов, от числа факторов. В большинстве случае преимущество отдается первому способу.

Динамические ряды с длительной предысторией рассматриваются как ряды, на основе которых можно строить модели взаимосвязи показателей различных объектов достаточно высокого качества.

Динамические модели связи показателей могут быть:

· пространственными, т.е. моделирующими связи показателей по всем объектам, рассматриваемым в определенный момент (интервал) времени;

· динамическими, которые строятся по совокупности реализаций одного объекта за все периоды (моменты) времени;

· пространственно-динамическими, которые формируются по всем объектам за все периоды (моменты) времени.

Модели динамики показателейгруппируют по следующим видам:

1) одномерныемодели динамики: характеризуются как модели некоторого показателя данного объекта;

2) многомерные модели динамики одного объекта: моделируют несколько показателей объекта;

3) многомерные модели динамики совокупности объектов: моделируют несколько показателей системы объектов.

Соответственно, модели связи используются для пространственной экстраполяции (для прогнозирования значений результативных показателей новых объектов по значениям факторных признаков), модели динамики – для динамической экстраполяции (для прогнозирования зависимых переменных).

Можно выделить основные задачи использования пространственно-временной информации.

1. В случае краткой предыстории: выявление пространственных связей между показателями, т.е. изучение структуры связей между объектами для повышения точности и надежности моделирования этих закономерностей.

2. В случае длительной предыстории: аппроксимация закономерностей изменения показателей в целях объяснения их поведения и прогнозирования возможных состояний.

До последнего времени географические факторы, оказывающие существенно важное влияние на распространение заболеваний, исследовались сравнительно мало. Справедливость предположения об однородном перемешивании населения в небольшом городе или деревне уже давно ставилась под сомнение, хотя вполне допустимо в качестве первого приближения принять, что перемещения источников инфекции носят случайный характер и во многом напоминают движение частиц в коллоидном растворе. Тем не менее необходимо, конечно, иметь некоторое представление о том, к какому эффекту может привести наличие большого числа восприимчивых индивидуумов в пунктах, удаленных на довольно большие расстояния от любого данного источника инфекции.

В детерминистской модели, принадлежащей Д. Кендаллу, предполагается существование бесконечного двумерного континуума популяции, в которой на единицу площади приходится о индивидуумов. Рассмотрим область , окружающую точку Р, и допустим, что числа восприимчивых, зараженных и удаленных из коллектива индивидуумов равны соответственно . Величины х, у и z могут быть функциями времени и положения, однако их сумма должна равняться единице. Основные уравнения движения, аналогичные системе (9.18), имеют вид

где - пространственно взвешенное среднее значение

Пусть и - постоянные, - элемент площади, окружающий точку Q, и - неотрицательный весовой коэффициент.

Допустим, что начальная концентрация заболеваний равномерно распределена в некоторой небольшой области, окружающей первоначальный очаг. Заметим также, что в произведение Роху в явном виде введен множитель о, с тем чтобы скорость распространения инфекции оставалась независимой от плотности популяции. Если бы у оставалось постоянным на плоскости, то интеграл (9.53) наверняка сходился бы. В этом случае удобно было бы потребовать, чтобы

Описанная модель позволяет довольно далеко продвинуть математические исследования. Можно показать (с одной-двумя оговорками), что пандемия охватит всю плоскость в том и только в том случае, если плотность популяции превышает пороговое значение . Если пандемия возникла, то ее интенсивность определяется единственным положительным корнем уравнения

Смысл этого выражения состоит в том, что доля индивидуумов, заболевающих в конце концов в любой области, как бы далеко она ни отстояла от первоначального эпидемического очага, будет не меньше?. Очевидно, что эта теорема Кендалла о пороге пандемии аналогична пороговой теореме Кермака и Мак-Кендрика, в которой пространственный фактор не учитывался.

Можно также построить модель для следующего частного случая. Пусть х и у - пространственные плотности восприимчивых и зараженных индивидуумов соответственно. Если считать инфекцию локальной и изотропной, то нетрудно показать, что уравнения, соответствующие первым двум уравнениям системы (9.18), можно записать в виде

где не пространственные координаты] и

Для начального периода, когда можно приближенно считать постоянной величиной, второе уравнение системы (9.56) примет вид

Это стандартное уравнение диффузии, решение которого имеет вид

где постоянная С зависит от начальных условий.

Общее число зараженных индивидуумов, находящихся вне круга радиусом R, равно

Следовательно,

и если , то . Радиус соответствующий какому-либо выбранному значению растет со скоростью . Эту величину можно рассматривать как скорость распространения эпидемии, и ее предельное значение для больших t равно . В одном из случаев эпидемии кори в Глазго в течение почти полугода скорость распространения составляла около 135 м в неделю.

Уравнения (9.56) легко видоизменить так, чтобы была учтена миграция восприимчивых и зараженных индивидуумов, а также появление новых восприимчивых индивидуумов. Как и в случае повторяющихся эпидемий, рассмотренных в разд. 9.4, здесь возможно равновесное решение, однако небольшие колебания затухают столь же быстро или даже быстрее, чем в непространственной модели. Таким образом, ясно, что в данном случае детерминистский подход имеет определенные ограничения. В принципе следовало бы, конечно, предпочесть стохастические модели, но обычно анализ их сопряжен с огромными трудностями, во всяком случае если он проводится чисто математическим путем.

Было выполнено несколько работ по моделированию этих процессов. Так, Бартлетт использовал ЭВМ для изучения нескольких последовательных искусственных эпидемий. Пространственный фактор был учтен введением сетки ячеек . Внутри каждой ячейки использовались типичные непространственные модели для непрерывного или дискретного времени и допускалась случайная миграция зараженных индивидуумов между ячейками, имеющими общую границу. Была получена информация о критическом объеме популяции, ниже которого происходит затухание эпидемического процесса. Основные параметры модели были получены на основе фактических эпидемиологических и демографических данных.

Недавно автор этой книги предпринял ряд аналогичных исследований, в которых была сделана попытка построить пространственное обобщение стохастических моделей для простого и общего случаев, рассмотренных в разд. 9.2 и 9.3. Допустим, что имеется квадратная решетка, каждый узел которой занят одним восприимчивым индивидуумом. В центре квадрата помещается источник инфекции и рассматривается такой процесс цепочечно-биномиального типа для дискретного времени, в котором опасности заражения подвергаются только индивидуумы, непосредственно примыкающие к какому-либо источнику инфекции. Это могут быть либо только четыре ближайших соседа (схема 1), либо также индивидуумы, расположенные по диагонали (схема 2); во втором случае всего будет восемь индивидуумов, лежащих на сторонах квадрата, центр которого занимает источник инфекции.

Очевидно, что выбор схемы произволен, однако в нашей работе использовалось последнее расположение.

Сначала была рассмотрена простая эпидемия без случаев выздоровления. Для удобства использовалась решетка ограниченного размера, и информация о состоянии каждого индивидуума (т. е. восприимчив ли он к инфекции или является ее источником) хранилась в вычислительной машине. В процессе моделирования проводилась текущая запись изменений состояния всех индивидуумов и подсчитывалось общее число новых случаев заболевания во всех квадратах с первоначальным источником инфекции в центре. В памяти машины фиксировались также текущие значения суммы и суммы квадратов числа случаев. Это позволило довольно легко вычислить средние значения и средние квадратические ошибки. Детали этого исследования будут опубликованы в отдельной статье, а здесь мы отметим лишь одну-две частные особенности этой работы. Например, ясно, что при очень высокой вероятности достаточного контакта будет иметь место почти детерминированное распространение эпидемии, при котором на каждом новом этапе развития эпидемии будет добавляться новый квадрат с источниками инфекции.

При меньших вероятностях будет иметь место действительно стохастическое распространение эпидемии. Так как каждый источник инфекции может заразить только восемь своих ближайших соседей, а не всю популяцию, то можно ожидать, что эпидемическая кривая для всей решетки будет возрастать не столь резко, как при однородном перемешивании всей популяции. Этот прогноз действительно оправдывается, и число новых случаев увеличивается с течением времени более или менее линейно до тех пор, пока не начнут сказываться краевые эффекты (поскольку решетка имеет ограниченную протяженность).

Таблица 9. Пространственная стохастическая модель простой эпидемии, построенная на решетке 21x21

В табл. 9 приведены результаты, полученные для решетки при наличии одного исходного источника инфекции и вероятности достаточного контакта, равной 0,6. Можно видеть, что между первым и десятым этапами эпидемии среднее число новых случаев каждый раз увеличивается примерно на 7,5. После этого начинает преобладать краевой эффект, и эпидемическая кривая резко падает вниз.

Можно также определить среднее число новых случаев для любой данной точки решетки и найти таким образом эпидемическую кривую для этой точки. Удобно проводить усреднение по всем точкам, лежащим на границе квадрата, в центре которого находится источник инфекции, хотя симметрия в этом случае не будет полной. Сравнение результатов для квадратов различного размера дает картину эпидемической волны, движущейся от первоначального источника инфекции.

Здесь мы имеем последовательность распределений, моды которых увеличиваются в линейной прогрессии, а дисперсия непрерывно возрастает.

Было также выполнено более детальное исследование эпидемии общего типа с удалением зараженных индивидуумов. Безусловно, все это очень упрощенные модели. Однако важно понять, что они могут быть значительно усовершенствованы. Чтобы учесть мобильность популяции, надо допустить, что восприимчивые индивидуумы заражаются и от тех источников инфекции, которые не являются их ближайшими соседями. Возможно, здесь придется использовать какой-то весовой коэффициент, зависящий от расстояния. Видоизменения, которые нужно будет ввести при этом в программу вычислительной машины, сравнительно невелики. На следующем этапе, возможно, удастся описать таким способом реальные или типичные популяции с самой разнообразной структурой. Это откроет возможность оценивать эпидемиологическое состояние реальных популяций с точки зрения опасности возникновения эпидемий различного типа.


Форма пространственной конфигурации кабель-троса при буксировке подводного аппарата зависит от режима движения (скорости относительно воды, распределения течений по глубине), особенностей

аппарата и характеристик кабель-троса (диаметр, длина, плавучесть и т. п.). Особенность формы кабель-троса при движении комплекса вдоль заданной линии профиля заключается в том, что по его длине ридианальные углы в изменяются в широких пределах (так же, как и дополнительные меридианальные углы ), но азимутальные углы и углы гидродинамической скорости к в любой точке троса имеют малые значения. Это допущение позволяет представить уравнения связи гибкой нити для данного случая, выраженные в проекциях орта касательной на неподвижные оси, следующим образом:

а уравнения, полученные из условия равновесия сил на элементарном отрезке гибкой нити в стационарном режиме, записать в виде

Нелинейные обыкновенные дифференциальные уравнения (7.30) и (7.31) представляют собой математическое описание статической пространственной конфигурации кабель-троса. Ниже приводятся некоторые результаты исследований, выполненных путем решения уравнений (7.30) и (7.31) на ЦВМ.

На рис. 7.10 приведены кривые зависимости натяжения Т, глубины и расстояния между ПА и судном от скорости буксировки при фиксированной длине кабель-троса 6000 м. Натяжение в точке крепления к судну (у буксирной лебедки) уменьшается с увеличением скорости до 4 м/с и нарастает при дальнейшем увеличении скорости буксировки. При этом ПА всплывает с глубины 6000 до 1000 м, но расстояние между аппаратом и судном увеличивается.

Рис. 7.11 показывает, как изменяются натяжение в точке крепления к судну, длина кабель-троса и расстояние между ПА и судном с увеличением скорости буксировки при поддержании постоянной

глубины погружения ПА на 6000 м. С ростом скорости буксировки до 2 м/с необходимо увеличить длину кабель-троса до 13000 м. Вид статических конфигураций кабель-троса длиной 6000 м в вертикальной плоскости при скоростях буксировки (кривые 1, 2, 3 соответственно) иллюстрирует рис. 7.12.

Рис. 7.10. Статические параметры движения кабель-троса в зависимости от скорости буксировки.

Рис. 7.11. Статические параметры движения кабель-троса при постоянной глубине погружения ПА.

Особенность движения кабель-троса при буксировке ПА заключается в том, что оно происходит с малыми боковыми и вертикальными скоростями по сравнению со скоростью продольного перемещения кабеля. Для любой его точки соблюдаются условия и скорость поступательного продольного движения практически никогда не превосходит м/с. Кроме того, стремятся, чтобы буксировка протекала плавно, без резких усилий в кабеле. При этих условиях допускается раздельный анализ динамики движения кабель-троса в вертикальной (продольное движение) и горизонтальной (боковое движение) плоскостях. Уравнения продольного движения записываются в виде

а бокового

Все коэффициенты рассчитываются при постоянных значениях гидродинамической скорости и ее касательной составляющей и неизменном во времени натяжении кабель-троса, определяемого выражением

Дифференциальные уравнения в частных производных (7.32) и (7.33) решаются при начальных , а также граничных условиях на нижнем и верхнем концах кабель-троса, причем последние играют роль управляющих воздействий и складываются из соответствующих проекций скорости движения судна-буксира и изменения длины кабеля в результате работы буксирной лебедки:

Лучшие статьи по теме