Гид компьютерного мира - Информационный портал
  • Главная
  • Программы
  • Определение активной длительности сигнала и активной ширины его спектра. Спектр излучения радиосигнала Что ширина спектра

Определение активной длительности сигнала и активной ширины его спектра. Спектр излучения радиосигнала Что ширина спектра

Теоретически, как указывалось выше, для большинства периодических функций спектр неограничен, т.е. для передачи сигналов телемеханики без изменения формы необходимы бесконечно большая полоса пропускания канала связи и отсутствие амплитудных и фазовых искажений. Практически все каналы связи имеют ограниченную полосу пропускания, и форма сигналов при передаче по каналу изменяется даже при отсутствии в этой полосе амплитудных и фазовых искажений. Очевидно, важно передать ту часть спектра сигнала, которая содержит гармонические составляющие с относительно большими амплитудами. В связи с этим вводится понятие практической ширины спектра сигнала. Под практической шириной спектра сигнала понимается та область частот, в пределах которой лежат гармонические составляющие сигнала с амплитудами, превышающими наперед заданную величину.

Поскольку средняя мощность, выделяемая сигналом на активном сопротивлении, равном 1 Ом, складывается из мощностей, выделяемых на этом сопротивлении гармоническими составляющими,

практическая ширина спектра с энергетической точки зрения может быть определена как область частот, в пределах которой сосредоточена подавляющая часть мощности сигнала.

В качестве примера определим практическую ширину спектра периодической последовательности прямоугольных импульсов (рис. 1.8,а), если требуется учесть все гармонические составляющие сигнала, амплитуды которых более 0,2 от амплитуды первой гармоники. Число подлежащих учету гармоник k может быть получено из выражения

,

откуда k = 5.

Таким образом, практическая ширина спектра в рассмотренном примере оказывается равной 5W 1 , в ней размещаются всего три гармоники (первая, третья и пятая) и постоянная составляющая.

Средняя мощность P k 5 , выделяемая в активном сопротивлении, равном 1 Ом, перечисленными составляющими, равна

Средняя мощность, выделяемая в этом же сопротивлении всеми составляющими сигнала, будет

Таким образом, %, т.е. составляющие, входящие в практический спектр, выделяют в активном сопротивлении 96 % всей мощности сигнала.

Очевидно, расширение практического спектра данного сигнала (свыше 5W 1) с энергетической точки зрения нецелесообразно.

Ограничение спектра сигнала оказывает также влияние на его форму. Для иллюстрации на рис. 1.8 показано изменение формы прямоугольных импульсов при сохранении в спектре только постоянной составляющей и первой гармоники (рис. 1.8, б ), при ограничении спектра частотой 3W 1 (рис. 1.8, в ) и при ограничении спектра частотой 5W 1 (рис. 1.8, г ). Как следует из рисунка, чем круче должен быть фронт импульса, тем большее число высших гармонических составляющих должно входить в состав сигнала.


A 0 +A 1 (t )



б
a

U (t )
U (t )

A 0 +A 1 (t )+A 3 (t ) A 0 +A 1 (t )+A 3 (t)+A 5 (t )

в
г

Рис. 1.8. Формы сигнала при ограничении спектра последовательности

прямоугольных импульсов

Рассмотренная зависимость формы периодического сигнала от количества суммируемых гармоник показывает, что при выборе практической ширины спектра сигнала нельзя ограничиваться только энергетическими соображениями. Необходимо учитывать требования к сигналу на выходе системы, как с энергетической точки зрения, так и с точки зрения сохранения его формы. В общем случае практическая ширина спектра сигнала выбирается из условия

, (1.21)

где m = 0,5… 2 – коэффициент формы импульса; при m = 1 обеспечивается передача около 90 % всей энергии сигнала.

В кодоимпульсных системах телеизмерения, а также во многих системах телеуправления каждая кодовая комбинация состоит из определенной последовательности прямоугольных импульсов и пауз. Кодовая комбинация, соответствующая данной величине измеряемого параметра или команде, может периодически передаваться по каналу связи. Спектр такого сигнала зависит, конечно, от того какая именно кодовая комбинация передается. Но самым главным фактором, определяющим удельный вес высших гармоник спектра, остается наибольшая частота следования импульсов. Поэтому и для кодоимпульсных систем при определении практически необходимой ширины полосы частот выбирают сигнал в виде периодической последовательности прямоугольных импульсов (рис. 1.5). Параметр t выбирают равным длительности самого короткого импульса среди всех встречающихся в кодовых комбинациях, период следования T = 2t. В этом случае наибольшая частота следования импульсов W max = 2p / T и частота основной гармоники спектра W 1 = W max . Необходимая ширина полосы частот сигнала определяется дискретным спектром с ограниченным числом составляющих и в соответствии с выражением (1.21).

Характер спектра, определяющий требуемую полосу частот, зависит не только от вида сигнала, но и от условий, существующих в тракте передачи. Если переходные процессы, возникающие в системе при передаче одного импульса, заканчиваются до момента возникновения следующего импульса, то вместо периодической последовательности импульсов можно рассматривать передачу независимых одиночных импульсов.

При энергетическом подходе длительность сигнала или ширину его спектра определяют по заданной доле от полной энергии сигнала. Так, например, для сигнала в виде прямоугольного импульса длительностьюt спектральная плотность имеет бесконечно широкий спектр, однако анализ показывает, что первый лепесток спектрасодержит 90% от полной энергии импульса, а сумма первого и второгоуже 95%. Аналогично можно рассуждать и о длительности бесконечно длящегося сигнала с конечной энергией.

При информационном подходе важное значение имеет форма сигнала: чем шире взята за основу условная ширина его спектра, тем ближе по форме к исходному может быть воспроизведенный по ограниченному спектру сигнал. Иногда ширину спектра определяют по уровнюот максимального значения. Для колоколообразных импульсов принята величина е -1/2 =0,606 от максимума. Ширина спектра и длительность сигнала взаимосвязаны. Для выявления этой связи определяют так называемыеэффективные длительность и ширину спектра, которые вычисляют с помощью следующих соотношений:

гдесередина импульса;

Полная длительность сигнала равна 2, а полная ширина спектра, включая и отрицательные частоты, 2, Произведение длительности на полосу равно:

Произведение*зависит от формы сигнала, но не может быть меньше 0.5(только для импульсов гауссовой формы это произведение равно 0.5). Не для всех сигналов данные интегралы имеют смысл(сходятся). Для определенияинеобходимо, чтобы функцияs(t) убывала бы быстрее, чем1/t , а функцияS(w ) быстрее, чем1/ w .

Для сигналов, не удовлетворяющих этим условиям, и применяют энергетический, либо информационный критерий, но следует помнить, что с уменьшением длительности сигнала ширина его спектра увеличивается, т.е. произведение длительности на ширину спектра для данного типа сигнала величина постоянная

Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

Литература: [Л.1], с 50-51

[Л.2], с 65-66

[Л.3], с 24-25

Для решения практических задач радиотехники крайне важно знать значения длительности и ширины спектра сигнала, а также соотношение между ними. Знание длительности сигнала позволяет решать задачи эффективного использования времени, предоставляемого для передачи сообщений, а знание ширины спектра – эффективного использования диапазона радиочастот.

Решение указанных задач требует строгого определения понятий «эффективная длительность» и «эффективная ширина спектра». На практике существует большое число подходов к определению длительности. В том случае, когда сигнал ограничен во времени (финишный сигнал), как это имеет место, например, для прямоугольного импульса, определение длительности не встречает затруднений. Иначе обстоит дело, когда теоретически сигнал имеет бесконечную длительность, например, экспоненциальный импульс

В этом случае в качестве эффективной длительности может быть принят интервал времени , в течение которого значение сигнала . При другом способе в качестве выбирают интервал времени, в течение которого . То же самое можно сказать и в отношении определения эффективной ширины спектра .

Хотя в дальнейшем, некоторые из этих способов будут использоваться при анализе радиотехнических сигналов и цепей, следует отметить, что выбор способа существенно зависит от формы сигнала и структуры спектра. Так для экспоненциального импульса более предпочтителен первый из указанных способов, а для сигнала колоколообразной формы – второй способ.

Более универсальным является подход, использующий энергетические критерии. При таком подходе в качестве эффективной длительности и эффективной ширины спектра рассматриваются соответственно интервал времени и диапазон частот, в пределах которых сосредоточена подавляющая часть энергии сигнала

, (2.52)

, (2.53)

где – коэффициент, показывающий, какая часть энергии сосредоточена в интервалах или . Обычно величину выбирают в пределах .

Применим критерии (2.52) и (2.53) для определения длительности и ширины спектра прямоугольного и экспоненциального импульсов. Для прямоугольного импульса вся энергия сосредоточена в интервале времени или , поэтому его длительность . Что касается эффективной ширины спектра, то установлено, что более 90% энергии импульса сосредоточено в пределах первого лепестка спектра. Если рассматривать односторонний (физический) спектр импульса, то ширина первого лепестка спектра составляет в круговых частотах или в циклических частотах. Отсюда следует, что эффективная ширина спектра прямоугольного импульса равна

Перейдем к определению и экспоненциального импульса. Полная энергия импульса составляет

.

Воспользовавшись (2.52), получим

.

Вычислив интеграл в левой части уравнения и решив его, можно прийти к следующему результату

.

Спектр экспоненциального импульса найдем, воспользовавшись преобразованием Фурье

,

откуда следует

.

Подставляя это выражение в (2.53) и решая уравнение, получим

.

Найдем произведение эффективной длительности на эффективную ширину спектра. Для прямоугольного импульса это произведение составляет

,

или для циклических частот

.

Для экспоненциального импульса

Таким образом, произведение эффективной длительности на эффективную ширину спектра одиночного сигнала есть постоянная величина, зависящая только от формы сигнала и величины коэффициента . Это означает, что при уменьшении длительности сигнала его спектр расширяется и наоборот. Этот факт уже отмечался пи рассмотрении свойства (2.46) преобразования Фурье. На практике это означает, что невозможно сформировать короткий сигнал, обладающий узким спектром, что является проявлением физического принципа неопределенности .

Спектр одиночного импульса имеет следующий вид:

Рис. 10.16. Спектр одиночного импульса

Из спектра одиночного импульса ясно, что чем меньше , тем шире спектр. При ® 0 – спектр равномерный; а при = – имеем на спектре одну постоянную составляющую.

Эта связь вытекает непосредственно из общего свойства преобразования Фурье.

Пусть ƒ(t ) соответствует спектр F (ω).

Изменим масштаб функции ƒ(t ) по оси времени в a раз и рассмотрим спектр функции a ƒ(at ):

заменим переменные at = z ; adt = dz ; t = z /a , то есть длительность функции ƒ(t ) уменьшится в a раз, во столько же раз возрастет ширина ее спектра.

Вопрос о соотношении между длительностью импульса и шириной его спектра имеет громадное практическое значение. В вычислительной технике необходимы короткие и мощные импульсы и в тоже время требуется, чтобы спектр импульса был как можно уже, так как широкие спектры вызывают трудности при создании аппаратуры.

Эти требования противоречивы.

Возникает вопрос: нельзя ли найти такие сигналы, которые обладали бы ограниченным спектром и одновременно ограниченной длительностью? Формализм преобразования Фурье этого не позволяет, однако для реальных сигналов могут быть введены разумные ограничения, которые позволяют ограничить либо Δt , либо Δƒ, либо и то и другое.

Наиболее удобным в этом смысле, как мы уже говорили ранее, является энергетический критерий. При этом можно представить себе следующие модели сигналов:

1. Сигналы ограничены во времени . Спектр – неограничен теоретически; физически он всегда ограничен и учитывается только та часть спектра, где сосредоточена подавляющая часть энергии сигнала.

2. Сигналы имеют ограниченный спектр , то есть математически это периодические, неограниченные во времени сигналы. Фактически, реальный процесс всегда ограничен во времени, поэтому учитывается только интервал времени, в котором сосредоточена подавляющая часть всей энергии сигнала.

где t 0 – часто задается естественно: для симметричного импульса t 0 = 0; для одиночного так же t 0 = 0 и формула имеет вид:

.

3. Сигналы, у которых и длительность (Δt ) и ширина спектра (Δƒ) ограничены как интервалы, в которых сосредоточена подавляющая часть энергии сигнала. Математический аппарат преобразования Фурье дает в этом случае приближенные разультаты.

При ограничениях по Δt и Δƒ можно поставить следующую задачу – отыскать такую форму сигнала, для которой произведение Δt · Δƒ достигает min.

Такому условию соответствует импульс, имеющий колоколообразную форму, которая описывается кривой Гаусса (кривой нормального распределения).


Рис. 10.17. Кривая Гаусса

Произведение Δt · Δƒ может быть уменьшено только до определенного предела:

Δt · Δƒ ≈ const > 0,

где const зависит от выбора определения Δƒ и Δt .

Приведем значения Δt · Δƒ для различных видов сигналов в предположении, что

,

где η = 0.9.

Δt · Δƒ – max для импульсов с разрывом (экспонента, прямоугольник); меньше для импульсов с разрывом в первой производной (треугольник и косинусоидальный) и наименьшее значение у колоколообразного импульса, у которого функция непрерывна со всеми своими производными. http://сайт/

Наиболее плодотворной и близкой к реальной действительности является модель с ограниченным спектром.

Этому способствует тот факт, что спектр мощности реального сигнала достаточно быстро спадает вне интервала частот, на который приходится основная часть мощности.

В инженерной практике принимают (в первом приближении независимо от формы сигнала):

Δt · Δƒ ≈ 1.

Практически, независимо от формы сигнала содержится > 90% энергии.

1. Если T имп = 3млсек, то какая требуется полоса частот, чтобы пропустить основную долю энергии?

.

2. Какова длительность телевизионных импульсов, если F TV max = 6мггц?

  • Величина и длительность воздействия тока на тело человека.
  • Виды движения материальных потоков и длительность производственного цикла
  • Випромінювання та поглинання світла атомом. Неперервний і лінійчатий спектри. Спектральний аналіз. Лазер
  • Влияние отражённого сигнала на результаты измерений. Многопутность
  • Время - форма бытия материи, которая выражает длительность существования материальных объектов и последовательность изменений этих объектов в процессе развития.
  • Нам уже ясно, что чем меньше длительность сигнала, тем шире его спектр.

    Это фундаментальное положение теории сигналов можно установить в общем виде на основе преобразования Фурье

    Рассмотрим поведение каждого из интегралов при увеличении Ω.

    В соответствии и леммой Римана, утверждающей, что если функция s(t) абсолютно интегрируема на промежутке то

    Геометрический смысл этого утверждения поясняется рисунком, в верхней части которого изображены некоторый произвольный сигнал s(t) и гармоническое колебание с частотой Ω, а в нижней части – их произведение.

    При достаточно высокой частоте Ω каждая положительная полуволна почти полностью компенсируется ближайшей к ней отрицательной полуволной и суммарная площадь под кривой s(t)cos(Ωt) или s(t)sin (Ωt) близка к нулю. Под достаточно высокой частотой следует понимать частоту Ω=2π/Т, при которой период Т достаточно мал по сравнению с длительностью сигнала s(t).

    Очевидно, что чем короче сигнал, тем меньше и период Т, соответствующий этому условию.

    Иными словами, чем короче сигнал, тем выше граничная частота спектра сигнала. Так как нижняя граница спектра примыкает к нулевой частоте, то общий спектр получается тем шире, чем меньше длительность сигнала. При этом оказывается, что произведение длительности на «техническую» ширину его спектра является величиной, близкой к единице.

    Ранее, мы на качественном уровне давали определение эквивалентной длительности, более строго она может быть определена как

    Причем начало отсчета времени совмещается с серединой импульса, так что выполняется условие

    Аналогично, эквивалентная ширина спектра ΔΩ=2πΔF определяется выражением

    При дополнительном условии

    Уточняющем начало отсчета частоты на оси Ω.

    Если сигнал нормирован таким образом, что его энергия Е равна единице, т.е.

    То выражение для τ и ΔΩ, зависящая от формы сигнала, в любом случае не может быть меньше ½.

    Таким образом, для любого сигнала выполняется условие τ и ΔF≥1/4π.

    В частности, для гауссова импульса, основываясь на ранее полученных результатах, находим

    Используя условие нормировки



    получаем

    Из этого примера видно, что из всех сигналов гауссов импульс обладает наименьшей возможной величиной произведения τ и ΔF.

    Сжатие импульса во времени с целью, например, повышения точности измерения момента его появления, неизбежно сопровождается расширением спектра импульса, что заставляет расширять полосу пропускания измерительного устройства. Аналогично, сжатие спектра импульса, например с целью повышения точности измерения частоты неизбежно сопровождается растяжением сигнала во времени, что требует увеличения промежутка времени наблюдения (измерения). Невозможность одновременно сконцентрировать сигнал в узкой полосе часто и в коротком промежутке времени представляет собой одно из проявлений извествного в физике принципа неопределенности.

    Лучшие статьи по теме