Гид компьютерного мира - Информационный портал

4 поточный пентиум. Процессоры

Введение

Перед началом сезона летних отпусков оба ведущих производителя процессоров, AMD и Intel, выпустили последние модели процессоров в своих современных линейках CPU, нацеленных на использование в высокопроизводительных PC. Сначала сделала последний шаг перед предстоящим качественным скачком AMD и примерно с месяц назад представила Athlon XP 3200+ , который, как предполагается, станет самым быстрым представителем семейства Athlon XP. Дальнейшие же планы AMD в этом секторе рынка связываются уже с процессором следующего поколения с x86-64 архитектурой, Athlon 64, который должен появится в сентябре этого года. Intel же выждал небольшую паузу и представил последний из Penlium 4 на 0.13-микронном ядре Northwood только сегодня. В итоге, заключительной моделью в этом семействе стал Pentium 4 с частотой 3.2 ГГц. Пауза перед выходом следующего процессора для настольных PC, основанного на новом ядре Prescott, продлится до четвертого квартала, когда Intel вновь поднимет планку быстродействия своих процессоров для настольных компьютеров благодаря росту тактовой частоты и усовершенствованной архитектуре.

Следует отметить, что за время противостояния архитектур Athlon и Pentium 4, показала себя более масштабируемой архитектура от Intel. За период существования Pentium 4, выпускаемых по различным технологическим процессам, их частота выросла уже более чем вдвое и без проблем достигла величины 3.2 ГГц при использовании обычного 0.13-микронного технологического процесса. AMD же, задержавшаяся со своими Athlon XP на отметке 2.2 ГГц, не может похвастать на настоящий момент столь же высокими частотами своих процессоров. И хотя на одинаковых частотах Athlon XP значительно превосходит по быстродействию Pentium 4, постоянно увеличивающийся разрыв в тактовых частотах сделал свое дело: Athlon XP 3200+ с частотой 2.2 ГГц назвать полноценным конкурентом Penium 4 3.2 ГГц можно лишь со значительными оговорками.

На графике ниже мы решили показать, как росли частоты процессоров семейств Pentium 4 и Athlon за последние три года:

Как видим, частота 2.2 ГГц является для AMD непреодолимым барьером, покорен который будет в лучшем случае только лишь во второй половине следующего года, когда AMD переведет свои производственные мощности на использование 90-нанометровой технологии. До этих же пор даже процессоры следующего поколения Athlon 64 будут продолжать иметь столь невысокие частоты. Смогут ли они при этом составить достойную конкуренцию Prescott – сказать трудно. Однако, похоже, AMD ждут тяжелые проблемы. Prescott, обладающий увеличенным кешем первого и второго уровня, усовершенствованной технологией Hyper-Threading и растущими частотами может стать гораздо более привлекательным предложением, нежели Athlon 64.

Что касается процессоров Pentium 4, то их масштабируемости можно только позавидовать. Частоты Pentium 4 плавно увеличиваются с самого момента выхода этих процессоров. Небольшая пауза, наблюдающаяся летом-осенью этого года, объясняется необходимостью внедрения нового технологического процесса, но она не должна повлиять на расстановку сил на процессорном рынке. Включив технологию Hyper-Threading и переведя свои процессоры на использование 800-мегагерцовой шины, Intel добился ощутимого превосходства старших моделей своих CPU над процессорами конкурента и теперь может ни о чем не беспокоиться, по крайней мере, до начала массового распространения Athlon 64.

Также на графике выше мы показали и ближайшие планы компаний AMD и Intel по выпуску новых CPU. Похоже, AMD в ближайшее время не должна питать никаких иллюзий по поводу своего положения на рынке. Борьба с Intel на равных для нее заканчивается, компания возвращается в привычную для себя роль догоняющего. Впрочем, долгосрочные прогнозы строить пока рано, посмотрим, что даст для AMD выход Athlon 64. Однако, судя по сдержанной реакции разработчиков программного обеспечения на технологию AMD64, никакой революции с выходом следующего поколения процессоров от AMD не произойдет.

Intel Pentium 4 3.2 ГГц

Новый процессор Pentium 4 3.2 ГГц, который Intel анонсировал сегодня, 23 июня, с технологической точки зрения ничего особенного собой не представляет. Это все тот же Northwood, работающий на частоте шины 800 МГц и поддерживающий технологию Hyper-Threading. То есть, по сути, процессор полностью идентичен (за исключением тактовой частоты) Pentium 4 3.0 , который был анонсирован Intel в апреле.

Процессор Pentium 4 3.2 ГГц, как и предшественники, использует ядро степпинга D1

Единственный факт, который следует отметить в связи с выходом очередного процессора Pentium 4 на ядре Northwood – это вновь возросшее тепловыделение. Теперь типичное тепловыделение Pentium 4 3.2 ГГц составляет порядка 85 Вт, а максимальное - ощутимо превышает величину 100 Вт. Именно поэтому использование грамотно спроектированных корпусов является одним из необходимых требований при эксплуатации систем на базе Pentium 4 3.2 ГГц. Одного вентилятора в корпусе теперь явно недостаточно, кроме того, необходимо следить и за тем, чтобы воздух в районе размещения процессора хорошо вентилировался. Intel также говорит и о том, что температура воздуха, окружающего процессорный радиатор, не должна превышать 42 градуса.

Ну и еще раз напомним, что представленный Pentium 4 3.2 ГГц – последний CPU от Intel для высокопроизводительных настольных систем, основанный на 0.13-микронной технологии. Следующий процессор для таких систем будет использовать уже новое ядро Prescott, изготавливаемое по 90-нанометровой технологии. Соответственно, тепловыделение будущих процессоров для настольных PC будет меньше. Следовательно, Pentium 4 3.2 ГГц так и останется рекордсменом по тепловыделению.

Официальная цена на Pentium 4 3.2 ГГц составляет $637, а это значит, что данный процессор является самым дорогим CPU для настольных компьютеров на сегодняшний день. Более того, Intel рекомендует использовать новинку с недешевыми материнскими платами на базе набора логики i875P. Однако, как мы знаем, данным требованием можно пренебречь: многие более дешевые системные платы на базе i865PE обеспечивают аналогичный уровень производительности благодаря активизации производителями технологии PAT и в наборе логики i865PE.

Как мы тестировали

Целью данного тестирования являлось выяснение того уровня производительности, который может обеспечить новый Pentium 4 3.2 ГГц по сравнению с предшественниками и старшими моделями конкурирующей линейки Athlon XP. Таким образом, в тестировании помимо Pentium 4 3.2 ГГц приняли участие Petnium 4 3.0 ГГц, Athlon XP 3200+ и Athlon XP 3000+. В качестве платформы для тестов Pentium 4 мы выбрали материнскую плату на чипсете i875P (Canterwood) с двухканальной DDR400 памятью, а тесты Athlon XP проводились при использовании материнской платы на базе наиболее производительного чипсета NVIDIA nForce 400 Ultra.

Состав тестовых систем приведен ниже:

Примечания:

  • Память во всех случаях эксплуатировалась в синхронном режиме с FSB в двухканальной конфигурации. Использовались наиболее агрессивные тайминги 2-2-2-5.
  • Тестирование выполнялось в операционной системе Windows XP SP1 с установленным пакетом DirectX 9.0a.

Производительность в офисных приложениях и приложениях для создания контента

В первую очередь по сложившейся традиции мы измерили скорость процессоров в офисных приложениях и приложениях, работающих с цифровых контентом. Для этого мы воспользовались тестовыми пакетами семейства Winstone.

В Business Winstone 2002, включающем в себя типовые офисные бизнес-приложения, на высоте оказываются процессоры семейства Athlon XP, производительность которых ощутимо превосходит скорость процессоров конкурирующего семейства. Данная ситуация достаточно привычна для этого теста и обуславливается как особенностями архитектуры Athlon XP, так и большим объемом кеш-памяти у ядра Barton, суммарная емкость которой благодаря эксклюзивности L2 достигает 640 Кбайт.

В комплексном тесте Multimedia Content Creation Winstone 2003, измеряющем скорость работы тестовых платформ в приложениях для работы с цифровым контентом, картина несколько иная. Процессоры Pentium 4, имеющие NetBurst архитектуру и обладающие высокоскоростной шиной с пропускной способностью 6.4 Гбайта в секунду оставляют старшие модели Athlon XP далеко позади.

Производительность при обработке потоковых данных

Большинство приложений, работающих с потоками данных, как известно, работает быстрее на процессорах Pentium 4. Здесь раскрываются все преимущества NetBurst архитектуры. Поэтому, результат, полученный нами в WinRAR 3.2, не должен никого удивлять. Старшие Pentium 4 значительно обгоняют по скорости сжатия информации топовые Athlon XP.

Аналогичная ситуация наблюдается и при кодировании звуковых файлов в формат mp3 кодеком LAME 3.93. Кстати, данный кодек поддерживает многопоточность, поэтому высокие результаты Pentium 4 здесь можно отнести и на счет поддержки этими CPU технологии Hyper-Threading. В итоге, Pentium 4 3.2 обгоняет старший Athlon XP с рейтингом 3200+ почти на 20%.

В данное тестирование мы включили результаты, полученные при измерении скорости кодирования AVI ролика в формат MPEG-2 одним из лучших кодеров, Canopus Procoder 1.5. Как это не удивительно, Athlon XP в данном случае показывает слегка более высокую производительность. Впрочем, отнести это, скорее всего, следует на счет высокопроизводительного блока операций с плавающей точкой, присутствующего в Athlon XP. SSE2 инструкции процессоров Pentium 4 в данном случае, как мы видим, не могут являться столь же сильной альтернативой. Правда, следует отметить, что разрыв в скорости старших моделей Athlon XP и Pentium 4 совсем небольшой.

Кодирование видео в формат MPEG-4 – еще один пример задачи, где процессоры Pentium 4 с технологией Hyper-Threading и 800-мегагерцовой шиной демонстрирует свои сильные стороны. Превосходство Pentium 4 3.2 над Athlon XP 3200+ в этом тесте составляет почти 20%.

Аналогичная ситуация наблюдается и при кодировании видео при помощи Windows Media Encoder 9: это приложение имеет оптимизацию под набор команд SSE2 и отлично приспособлено для NetBurst архитектуры. Поэтому, совершенно неудивительно, что вновь верхнюю часть диаграммы оккупировали процессоры от Intel.

Производительность в игровых приложениях

После выхода пропатченной версии 3Dmark03 результаты Pentium 4 относительно Athlon XP в этом тесте стали несколько выше. Однако расклад сил это не изменило: Pentium 4 лидировали в этом бенчмарке и ранее.

Pentium 4 подтверждает свое лидерство и в общем зачете в 3Dmark03. Правда, отрыв здесь небольшой: сказывается тот факт, что 3Dmark03 в первую очередь – это тест видеоподсистемы.

После перехода Pentium 4 на использование 800-мегагерцовой шины, Pentium 4 стали обгонять Athlon XP и в более старой версии 3Dmark2001. Причем, отрыв Pentium 4 3.2 ГГц от Athlon XP 3200+ уже достаточно существенен и составляет 6%.

В Quake3 Pentium 4 традиционно обгоняет Athlon XP, поэтому результат удивления не вызывает.

Аналогичная картина наблюдается и в игре Return to Castle Wolfenstein. Это совершенно логично, поскольку данная игра использует тот же движок Quake3.

Одно из немногих приложений, где старшей модели Athlon XP удается удержать лидерство, это – Unreal Tournament 2003. Хочется отметить, что все современные игры не имеют поддержки технологии Hyper-Threading, поэтому в играх потенциал новых Pentium 4 пока раскрывается не полностью.

А вот в Serious Sam 2 Athlon XP 3200+ больше лидером не является. С выходом нового процессора от Intel пальма первенства в этой игре переходит именно к Pentium 4 3.2 ГГц.

Новая игра Splinter Cell, хотя и основана на том же движке, что и Unreal Tournament 2003, быстрее работает на процессорах от Intel.

В целом, остается признать, что быстрейшим процессором для современных 3D игр на данный момент является Pentium 4 3.2 ГГц, обходящий Athlon XP 3200+ в большинстве игровых тестов. Ситуация меняется стремительно. Еще совсем недавно старшие Athlon XP в игровых тестах нисколько не уступали процессорам от Intel.

Производительность при 3D-рендеринге

Поскольку 3ds max 5.1, который мы использовали в данном тестировании, хорошо оптимизирован под многопоточность, Pentium 4, умеющий исполнять два потока одновременно благодаря технологии Hyper-Threading, с большим отрывом оказывается лидером. Даже старший Athlon XP 3200+ не может составить ему никакой конкуренции.

Абсолютно тоже самое можно сказать и про скорость рендеринга в Lightwave 7.5. Впрочем, в некоторых сценах, например при рендеринге Sunset, старшие модели Athlon XP смотрятся не так уж и плохо, однако такие случаи единичны.

Спорить с Pentium 4, выполняющем два потока одновременно, в задачах рендеринга для Athlon XP сложновато. К сожалению, AMD не имеет планов по внедрению технологий, подобных Hyper-Threading даже в будущих процессорах семейства Athlon 64.

Абсолютно аналогичная ситуация наблюдается и в POV-Ray 3.5.

Производительность при научных расчетах

Для тестирования скорости новых CPU от AMD при научных расчетах был использован пакет ScienceMark 2.0. Подробности об этом тесте можно получить на сайте http://www.sciencemark.org . Этот бенчмарк поддерживает многопоточность, а также все наборы SIMD-инструкций, включая MMX, 3DNow!, SSE и SSE2.

То, что в задачах математического моделирования или криптографии процессоры семейства Athlon XP показывают себя с наилучшей стороны, известно давно. Здесь мы видим еще одно подтверждение этого факта. Хотя, надо сказать, свое былое преимущество Athlon XP начинает терять. Например, в тесте Molecular Dinamics на первое место выходит уже новый Pentium 4 3.2 ГГц.

Кроме теста ScienceMark в этом разделе мы решили протестировать и скорость работы новых процессоров в клиенте российского проекта распределенных вычислений MD@home, посвященному расчету динамических свойств олигопептидов (фрагментов белков). Расчет свойств олигопептидов, возможно, сможет помочь изучению фундаментальных свойств белков, тем самым, внеся вклад в развитие науки.

Как видим, задачи молекулярной динамики новые Pentium 4 решают быстрее Athlon XP. Столь высокого результата Pentium 4 достигают благодаря своей технологии Hyper-Threading. Сам клиент MD@home, к сожалению, многопоточность не поддерживает, однако запуск двух клиентских программ в параллели на системах с процессорами с технологией Hyper-Threading позволяет ускорить процесс расчета более чем на 40%.

Выводы

Проведенное тестирование явно показывает, что на очередном этапе конкурентной борьбы Intel удалось одержать победу над AMD. Последний процессор на ядре Northwood обгоняет по своей производительности старшую и последнюю модель Athlon XP в большинстве тестов. За последнее время Intel смог значительно увеличить частоты своих CPU, увеличить частоту их шины, а также внедрить хитрую технологию Hyper-Threading, дающую дополнительный прирост скорости в ряде задач. AMD же, не имея возможности наращивать тактовые частоты своих процессоров ввиду технологических и архитектурных сложностей, не смогла адекватно усилить свои CPU. Не поправило положение даже появление нового ядра Barton: последние модели Pentium 4 оказываются явно сильнее старших Athlon XP. В результате, Pentium 4 3.2 ГГц вполне можно считать наиболее производительным CPU для настольных систем в настоящее время. Такая ситуация продлится по меньшей мере до сентября, когда AMD, наконец, должна будет анонсировать свои новые процессоры семейства Athlon 64.

Необходимо отметить и тот факт, что рейтинговая система, используемая в настоящее время AMD для маркировки своих процессоров, не может больше являться критерием, по которому Athlon XP можно сопоставлять с Pentium 4. Улучшения, которые произошли с Pentium 4, в числе которых следует отметить перевод этих CPU на 800-мегагерцовую шину и внедрение технологии Hyper-Threading, привели к тому, что Pentium 4 с частотой, равной рейтингу соответствующего Athlon XP, оказывается явно быстрее.

В общем, мы с интересом будем ожидать осени, когда и AMD и Intel представят свои новые разработки, Prescott и Athlon 64, которые, возможно, смогут обострить конкурентную борьбу между давними соперниками на процессорном рынке. Сейчас же AMD оказывается оттеснена Intel в сектор недорогих процессоров где, впрочем, эта компания чувствует себя превосходно: Celeron по сравнению с Athlon XP – откровенно слабый соперник.

Как известно, революции в компьютерном
мире случаются все реже. Да и так ли они необходимы там, где, в общем-то, "все
хорошо", где возможности систем и продуктов с лихвой покрывают нужды большинства
современных пользователей. Это в полной мере относится и к процессорам корпорации
Intel, лидера индустрии. У компании есть полная линейка высокопроизводительных
CPU всех уровней (серверные, десктопные, мобильные), тактовые частоты давно уже
перевалили за "заоблачные" 3 GHz, продажи идут просто "на ура".
И наверное, если бы не оживившиеся конкуренты (точнее, конкурент ), то все
было бы совсем хорошо.

Но "гонка гигагерцев" не прекращается. Оставим в стороне рассмотрение вопросов вроде "Кому это нужно? " и "Насколько это востребовано? " — примем лишь как факт: чтобы удержаться на плаву, производители CPU просто вынуждены тратить силы на выпуск все более быстродействующих (или как минимум более высокочастотных ) продуктов.

Начало февраля Intel отметила представлением целой обоймы новых процессоров. Компания
выпустила сразу семь новых CPU, в числе которых:

  • Pentium 4 3,40 GHz ("старое" ядро Northwood);
  • Pentium 4 Extreme Edition 3,40 GHz;
  • целых четыре представителя новой линейки с ядром Prescott (кстати, ударение
    на первом слоге) — 3,40E, 3,20E, 3,0E и 2,80E GHz, изготовленные по 90-нанометровой
    технологии и оснащенные кэшем второго уровня объемом 1 MB.

Все эти CPU рассчитаны на шину 800 MHz и поддерживают технологию Hyper-Threading. Кроме того, Intel выпустила Pentium 4 на ядре Prescott с частотой 2,8A GHz, также изготовленный по 90-нанометровому процессу, но рассчитанный на частоту FSB 533 MHz и не поддерживающий Hyper-Threading . По информации Intel, предназначен этот процессор специально для OEM-производителей ПК в ответ на их пожелания. От себя добавим — и на радость оверклокерам, которые наверняка оценят его возможности разгона.

С выпуском новых CPU семейство Pentium 4 значительно пополнилось и сейчас выглядит так, как показано в табл. 1. Естественно, пока Intel вовсе не собирается сворачивать производство Pentium 4 на ядре Northwood с FSB 533 и 800 MHz. Кроме того, в линейке остаются и несколько моделей, рассчитанных на шину 400 MHz (пять процессоров от 2A до 2,60 GHz).

Разрабатывая 90-нанометровые технологии, которые должны обеспечить нормальное
функционирование процессоров класса Prescott, инженеры Intel вынуждены
были преодолевать серьезные препятствия. Природа этих преград состояла
не в недостаточном разрешении производственного оборудования, а в проблемах
физического характера, связанных с невозможностью изготовления столь малых
транзисторов по традиционным технологиям.

Первой проявилась утечка заряда с затвора транзистора через истончившийся
слой диэлектрика между затвором и каналом. При разрешении 90 нм он "выродился"
в барьер из четырех атомов SiO2 толщиной 1,2 нм. Появилась необходимость
в новых изолирующих материалах с более высоким значением константы диэлектрической
проницаемости (high-K dielectric). За счет большей проницаемости они позволяют
наращивать толстый (до 3 нм) изолирующий слой, не создавая при этом препятствий
для электрического поля затвора. Таковыми стали оксиды гафния и циркония.
К сожалению, они оказались несовместимы с применяемыми ныне поликристаллическими
затворами, да и фононные колебания, возникающие в диэлектрике, вызывают
снижение подвижности электронов в канале.

На границе с затвором наблюдается иное явление, выражающееся в значительном
повышении порогового уровня напряжения, необходимого для изменения состояния
проводимости канала транзистора. Решение было найдено в виде металлического
затвора. В прошлом году специалисты корпорации подобрали, наконец, два
подходящих металла, которые позволили сконструировать новые миниатюрные
NМOS- и PMOS-транзисторы. Какие именно металлы они использовали — до
сих пор держится в секрете.

Чтобы увеличить быстродействие транзисторов (оно определяется скоростью
перехода в открытое/закрытое состояние), Intel прибегла к формированию
канала из единого кристалла напряженного кремния. "Напряжение"
в данном случае означает деформирование кристаллической решетки материала.
Как оказалось, сквозь структурно нарушенный кремний как электроны (+10%
для NМOS), так и дырки (+25% для PMOS) проходят с меньшим сопротивлением.
Улучшение подвижности увеличивает максимальный ток транзистора в открытом
состоянии.

Для NМOS- и PMOS-транзисторов напряженное состояние достигается различными
методиками. В первом случае все очень просто: обычно транзистор сверху
"укрыт" слоем нитрида кремния, который выполняет функцию предохраняющей
маски, а для создания напряжения в канале толщину слоя нитрида увеличивают
вдвое. Это ведет к созданию дополнительной нагрузки на области истока
и стока и, соответственно, растягивает, деформирует канал.

PMOS-транзисторы "напрягают" по другой схеме. Сначала зоны
истока и стока вытравливают, а потом наращивают в них слой SiGe. Атомы
германия превышают по размерам атомы кремния и поэтому германиевые прослойки
всегда использовались для создания напряжения в кремнии. Однако особенность
технологии Intel заключается в том, что в данном случае сжатие кремниевого
канала происходит в продольном сечении.

Новый технологический процесс также позволил увеличить количество слоев
металлизации с шести до семи (медные соединения). Любопытно, что на производственной
линии "плечом к плечу" трудятся как литографические аппараты
нового поколения с длиной волны 193 нм, так и их предшественники с длиной
волны 248 нм. Вообще процент повторно использованной техники достиг 75,
что позволило снизить стоимость модернизации фабрик.

Особенности Prescott

В дискуссиях, предшествовавших выпуску процессора на ядре Prescott, он в шутку именовался не иначе как "Pentium 5". Собственно, именно таким был типичный ответ компьютерного профи на вопрос "Что такое Prescott?". Конечно, Intel не стала менять торговую марку, да и достаточных оснований для этого не было. Вспомним практику выпуска программного обеспечения — там смена номера версии происходит только при кардинальной переработке продукта, тогда как менее значительные изменения обозначаются дробными номерами версий. В процессорной индустрии дробные номера пока не приняты, и то, что Prescott продолжил линейку Pentium 4, как раз и является отражением того факта, что перемены носят не настолько радикальный характер.

Процессоры на ядре Prescott хоть и содержат немало новшеств и модификаций по сравнению
с Northwood, однако основаны на той же архитектуре NetBurst, имеют ту же корпусировку,
что и предыдущие Pentium 4, устанавливаются в тот же разъем Socket 478 и, в принципе,
должны работать на большинстве материнских плат, поддерживающих 800 MHz FSB и
обеспечивающих должные напряжения питания (естественно, потребуется обновление
BIOS).

Детальное изучение практических вопросов, касающихся Prescott, мы оставим для отдельного материала. А пока попробуем рассмотреть, какие изменения появились в Prescott, и понять, насколько этот процессор отличается от своего предшественника и чего можно в результате ожидать.

Основные новшества, реализованные в ядре Prescott, следующие:

  • Перевод производства кристаллов на техпроцесс 90 нм.
  • Возросшая длина конвейера (с 20 до 31 стадии).
  • Вдвое увеличенные кэши L1 (кэш данных — с 8 до 16 KB) и L2 (с 512 KB до
    1 MB).
  • Изменения в архитектуре:
    -модифицированный блок предсказания переходов;
    -усовершенствованная логика работы L1-кэша (улучшенная предварительная выборка
    данных);
    -появление новых блоков в процессоре;
    -увеличенный объем некоторых буферов.
  • Усовершенствованная технология Hyper-Threading.
  • Появление поддержки нового набора SIMD-инструкций SSE3 (13 новых команд).

Главные различия трех процессорных ядер, использовавшихся в Pentium 4, сведены в табл. 2. Число транзисторов в Prescott увеличилось более чем вдвое — на 70 млн. Из них, по грубым оценкам, порядка 30 млн. можно отнести на счет удвоившегося L2-кэша (дополнительные 512 KB, по 6 транзисторов на одну ячейку). Причем остается еще вполне солидное число, и даже по одному этому значению можно косвенно судить о масштабах произошедших в ядре изменений. Заметим, что, несмотря на такой рост числа элементов, площадь ядра не только не увеличилась, но даже уменьшилась по сравнению с Northwood.

С 90-нанометровым технологическим процессом все, в общем-то, понятно (конечно, на упрощенном, "пользовательском" уровне). Меньший размер транзисторов позволит снизить напряжение питания процессора и уменьшить рассеиваемую им мощность, а следовательно, и нагрев. Это откроет дорогу для дальнейшего увеличения тактовых частот, которое хотя и будет сопровождаться ростом тепловыделения, но "начало отсчета" для этого роста будет уже другим, несколько ниже. Отметим, что с учетом большего числа транзисторов в Prescott по сравнению с Northwood правильнее было бы говорить не об уменьшении, а о сохранении или же меньшем увеличении рассеиваемой мощности.

Удлиненный конвейер . Как видно из табл. 2, по длине конвейера Prescott (31 стадия) более чем наполовину превосходит Northwood. Что за этим кроется, вполне понятно: это не первый случай, когда Intel увеличивает длину конвейера, нацеливаясь на повышение тактовых частот — известно, что чем длиннее конвейер, тем лучше "разгоняется" процессорное ядро. В принципе, сложно сказать однозначно, так ли необходимо такое "удлинение" на текущем этапе, на частотах в районе 3,5 GHz — энтузиасты-оверклокеры разгоняли Pentium 4 (Northwood) и до более высоких значений. Но рано или поздно рост числа стадий оказался бы неизбежен — так почему бы не совместить это событие с выпуском нового ядра?

Увеличенные объемы кэшей и буферов . В принципе, этот пункт напрямую связан с предыдущим. Чтобы обеспечить работой длинный конвейер на высоких частотах, желательно иметь большего объема "подручный склад" в виде кэша для уменьшения количества простоев, при которых процессор ожидает загрузки требуемых данных из памяти. Кроме того, хорошо известно, что при прочих равных из двух процессоров с разной длиной конвейера производительнее окажется тот, у которого этот параметр меньше. При ошибках предсказания перехода процессор вынужден "сбрасывать" свой конвейер и загружать его работой по-новому. И чем большее число стадий в нем содержится, тем болезненнее оказываются подобные промахи. Полностью их исключить, конечно же, нельзя, и на одинаковых частотах Northwood и Prescott последний оказался бы менее производительным… не будь у него большего L2-кэша, во многом компенсирующего отставание. Естественно, здесь все зависит от специфики конкретных приложений, что мы и попытаемся проверить в практической части.

Как говорилось выше, в Prescott увеличен не только общий L2-кэш, но и L1-кэш данных, объем которого вырос с 8 до 16 KB. Также изменились его организация и часть логики работы — к примеру, введен механизм принудительного продвижения (force forwarding ), уменьшающий задержки в случаях, когда зависимая операция загрузки данных из кэша не может спекулятивно выполняться до завершения предшествующей операции помещения этих данных в кэш.

Кроме объемов кэшей, увеличению подверглась и емкость двух планировщиков, отвечающих за хранение микроопераций (uops ), которые используются в инструкциях x87/SSE/SSE2/SSE3. Это, в частности, позволило более эффективно находить параллелизм в мультимедиаалгоритмах и выполнять их с лучшей производительностью.

Собственно, некоторых новшеств в архитектуре Pentium 4, реализованных в Prescott, мы уже успели коснуться, поскольку они "разбросаны" по ядру процессора и затрагивают многие его блоки. Следующим важным изменением является…


Модифицированный блок предсказания переходов . Как известно, точность
работы этого блока является критически важной для обеспечения высокой производительности
современного процессора. "Просматривая" программный код, следующий за
выполняемым в настоящий момент, процессор может заранее выполнять части
данного кода — это хорошо известное спекулятивное выполнение . Если же
в программе встречается ветвление в результате условного перехода (если-то-иначе ),
то возникает вопрос о том, какую из двух веток "лучше" выполнять заранее.
Алгоритмы в Northwood действовали относительно просто: переходы назад предполагались
совершающимися, вперед — нет. Это большей частью работало для циклов,
но не для других видов переходов. В Prescott используется понятие длины
перехода : исследования показали, что если дальность перехода превышает
определенный предел, то переход с большой долей вероятности совершаться не будет
(соответственно, спекулятивно выполнять эту часть кода не нужно). Также в Prescott
введен более тщательный анализ самих условий перехода, на основании которого принимаются
решения о вероятности выполнения перехода. Кроме статических алгоритмов предсказания,
изменениям подверглись и динамические алгоритмы (кстати, новые идеи были частично
заимствованы из мобильного Pentium M).

Появление новых блоков в процессоре . Два новых блока в Prescott — это блок побитовых сдвигов и циклических сдвигов (shifter/rotator) и выделенный блок целочисленного умножения . Первый позволяет осуществлять наиболее типичные операции сдвига на одном из двух быстрых ALU, работающих на удвоенной частоте ядра CPU (в предыдущих модификациях Pentium 4 эти операции выполнялись как целочисленные и занимали несколько тактов). Для осуществления целочисленного умножения ранее задействовались ресурсы FPU, что достаточно долго — нужно было передать данные в FPU, выполнить там сравнительно медленное умножение и передать результат обратно. В Prescott для ускорения этих операций добавлен новый блок, отвечающий за такие операции умножения.

Улучшенный Hyper-Threading . Конечно, все перечисленные выше новшества введены в Prescott неспроста. По словам специалистов Intel, большинство модификаций в логике работы кэшей, очереди команд и пр. так или иначе связаны с быстродействием процессора при использовании Hyper-Threading, т. е. при одновременной работе нескольких программных потоков. В то же время на производительность "однопоточных" (single-threaded) приложений эти нововведения оказывают лишь незначительное влияние. Также в Prescott увеличился набор инструкций, которым "позволено" исполняться на процессоре параллельно (например, операция с таблицей страниц и операция с памятью, разбивающая строку кэша). Опять-таки, для однопоточных приложений невозможность совмещения подобных операций практически не сказывалась на производительности, тогда как при выполнении двух потоков такое ограничение зачастую становилось "узким местом". Другой пример — если в Northwood происходило "непопадание в кэш" (cache miss) и возникала необходимость чтения данных из оперативной памяти, следующие операции просмотра кэша откладывались до окончания этого действия. В результате одно приложение, часто "промахивающееся" мимо кэша, могло существенно затормозить работу остальных потоков. В Prescott этот конфликт легко преодолевается, операции могут выполняться параллельно. Также в Prescott была переделана логика арбитража и разделения ресурсов между потоками с целью увеличения общей производительности.

Инструкции SSE3. Как мы помним, последний раз расширение набора SIMD-инструкций
Intel провела, выпустив первый Pentium 4 (Willamette) и реализовав в нем SSE2.
Очередное расширение, получившее название SSE3 и содержащее 13 новых инструкций,
осуществлено в Prescott. Все они, за исключением трех, используют SSE-регистры
и предназначены для повышения производительности в следующих областях:

  • быстрое преобразование вещественного числа в целое (fisttp );
  • сложные арифметические вычисления (addsubps, addsubpd, movsldup, movshdup,
    movddup
    );
  • кодирование видео (lddqu );
  • обработка графики (haddps, hsubps, haddpd, hsubpd );
  • синхронизация потоков (monitor, mwait ).

Естественно, детальное рассмотрение всех новых инструкций выходит за рамки материала, эта информация приведена в соответствующем руководстве для программистов. Инструкции первых четырех категорий служат как для ускорения выполнения самих операций, так и для того, чтобы сделать их более "экономными" в смысле использования ресурсов процессора (и, следовательно, оптимизации работы Hyper-Threading и механизма спекулятивного выполнения). Программный код при этом также значительно сокращается и, что немаловажно, упрощается. Например, инструкция ускоренного преобразования вещественного числа в целое fisttp заменяет семь (!) команд традиционного кода. Даже по сравнению с инструкциями SSE2 (которые сами по себе также ускоряют выполнение кода и сокращают его объем) команды SSE3 во многих случаях дают немалую экономию. Две инструкции последней группы — monitor и mwait — позволяют приложению (точнее потоку ) сообщать процессору, что в данный момент оно не выполняет полезной работы и находится в режиме ожидания (например, записи в определенную ячейку памяти, возникновения прерывания или исключительной ситуации). Процессор при этом может переводиться в режим пониженного энергопотребления или же, при использовании Hyper-Threading, отдавать все ресурсы другому потоку. В общем, с SSE3 для программистов открываются новые возможности по оптимизации кода. Проблема здесь, как всегда в таких случаях, одна: пока новый набор инструкций не стал общепринятым стандартом, разработчикам ПО придется поддерживать две ветки кода (с SSE3 и без оной), чтобы приложения работали на всех процессорах…

Камо грядеши?..

В общем, объем новшеств, реализованных в ядре Prescott, вполне можно назвать
значительным. И хотя до "настоящего Pentium 5" он недотягивает, но к
"четырем с половиной" вполне может приблизиться. Переход от ядра Northwood
к Prescott — в принципе, эволюционный процесс, хорошо укладывающийся в общую
стратегию Intel. Постепенные изменения в архитектуре Pentium 4 хорошо видны на
схеме: архитектура модифицируется и пополняется новыми особенностями — идет последовательная
оптимизация процессора под определенный набор ПО.

Чего же можно ожидать от Prescott? Пожалуй, прежде всего (хотя это может показаться и несколько странным) — новых частот. Intel сама признает, что на равных частотах производительность Prescott и Northwood будет мало отличаться. Положительное влияние большого L2-кэша и прочих новшеств Prescott во многом "компенсируется" его значительно более длинным конвейером, который болезненно реагирует на ошибки предсказания переходов. И даже с учетом того, что блок этого самого предсказателя переходов был усовершенствован, все равно идеальным он быть не может. Главное преимущество Prescott в другом: новое ядро позволит дальше наращивать частоту — до значений, недостижимых ранее с Northwood. По планам Intel ядро Prescott рассчитано на два года, пока его не сменит следующее ядро, изготовленное по технологии 65 нм (0,065 мкм).

Поэтому выпущенный сейчас процессор на новом ядре Prescott не претендует прямо со старта на лавры чемпиона производительности и во всей красе должен проявить себя в будущем. Еще одним подтверждением тому является и позиционирование процессора: Pentium 4 на ядре Prescott рассчитан на mainstream-системы, в то время как топовым CPU был и остается Pentium 4 Extreme Edition. Кстати, хотя планка частот у процессоров Intel номинально поднялась до 3,4 GHz с выходом Prescott, но появление первых OEM-систем на базе Pentium 4 3,4 GHz на новом ядре произойдет несколько позднее в этом квартале (а ведь коммерческие поставки Prescott начаты еще в IV квартале 2003 г.).

Еще одна область, где может проявить себя Prescott (и наверняка проявит), — это работа ПО, оптимизированного под SSE3. Процесс оптимизации уже начался, и на сегодня существует как минимум пять приложений с поддержкой нового набора инструкций: MainConcept (MPEG-2/4), xMPEG, Ligos (MPEG-2/4), Real (RV9), On2 (VP5/VP6). В течение 2004 г. поддержка SSE3 должна появиться в таких пакетах, как Adobe Premiere, Pinnacle MPEG Encoder, Sony DVD Source Creator, Ulead MediaStudio и VideoStudio, всевозможные аудио- и видеокодеки и т. д. Вспоминая процесс оптимизации под SSE/SSE2, можно понять, что результаты SSE3 мы увидим, но отнюдь не сразу — опять-таки, это в определенном смысле "задел на будущее".

Ну а что же "по ту сторону линии фронта"? Главный конкурент Intel по-прежнему идет своим путем, все дальше отдаляясь от "генеральной линии". AMD продолжает наращивать "голую производительность", пока что обходясь значительно более низкими частотами. Контроллер памяти, в Athlon 64 перекочевавший из северного моста в процессор, подлил масла в огонь, обеспечив невиданную ранее скорость доступа к ОЗУ. А недавно был выпущен процессор с рейтингом 3400+ (нет, о полном соответствии продукту конкурентов по частоте никто не говорит…).

Однако Intel и AMD сейчас находятся примерно в равных ситуациях — их топовые процессоры ожидают выхода соответствующего оптимизированного ПО, чтобы проявить себя на полную мощность. Intel все больше "уходит в мультимедиа": для офисного ПО производительности Pentium 4 хватает с лихвой, и чтобы Prescott реализовал свой потенциал, нужны оптимизированные мультимедиаприложения (и/или высокие тактовые частоты, в возможности достижения которых можно не сомневаться). Стоит отметить тот факт, что переработка кодеков под SSE3 — пожалуй, не самая сложная операция, а эффект от этого сразу почувствуют все приложения, использующие такие кодеки (причем переработка самих приложений при этом совсем необязательна).

С другой стороны, в середине 2004 г. выйдет 64-разрядная версия Windows для платформы AMD64, на которой как раз и должны проявиться возможности Athlon 64. Конечно, здесь встанет обычный вопрос о наборе приложений под новую ОС, без которых система остается практически бесполезной. Но вспомним, что уже как минимум существуют те же кодеки, откомпилированные под 64-битные Athlon. Так что есть вероятность того, что в недалеком будущем и платформе AMD будет где себя показать. В общем, создается впечатление, что пока титаны просто накачивают мускулы, строят оборонительные сооружения и готовят тылы перед главным… нет, скорее, очередным сражением…

Серия процессоров Intel Pentium 4 является наиболее удачной, если сравнивать с другими модификациями разработчика, так как на протяжении многих лет работы было доказано право на ее существование. В представленной статье можно узнать о том, чем отличаются данные процессоры, ознакомиться с их техническими характеристиками.


Благодаря результатам проведенного тестирования и отзывам можно определиться с выбором.

Гонка за частотами

Поколения процессоров постоянно сменяются одно за другим за счет гонке разработчиков за частотами. Конечно, появились и новые технологии, однако были не на первом плане. Таким образом, не только пользователи, но и производители прекрасно понимали, что в один прекрасный день будет достигнута эффективная частота процессора. Это произошло после выхода в свет четвёртого поколения Intel Pentium.

Частота функционирования одного ядра в 4 GHz стала пределом. Это произошло по той причине, что кристаллу для работы необходимо было много электроэнергии. Таким образом, рассеиваемая мощность в форме колоссального тепловыделения поставила под сомнение функционирование всей системы. Дальнейшие модификации процессоров Intel и аналоги соперников стали производиться в районе 4 ГГц. Следует также упомянуть про технологии, в которых использовалось нескольких ядер, а также о внедрении специальных инструкций, способных оптимизировать работу по обработке данных.

Первый блин комом

В области высоких технологий монополия на рынке не привела ни к чему хорошему. Это подтверждают многочисленные производители электроники, которые смогли убедиться в этом на собственном опыте. Но компании Intel и Rambus приняли решение хорошо заработать. В результате был выпущен совместный продукт, подающий большие надежды. Таким образом, свет увидел первый процессор Intel Pentium 4, работающий на Socket 423 и на достаточно высокой скорости общался с оперативной памятью Rambus. В результате многие пользователи захотели стать обладателями этого быстрого компьютера. Правда, эти две компании так и не стали монополистами на рынке.

Этому стало помехой открытие двухканального режима памяти. Результаты проведенного тестирования показали высокий прирост производительности. Таким образом, новой технологией сразу заинтересовались все разработчики компьютерных комплектующих. А Что касается первого процессора Pentium 4, он и сокет 423 стали историей, так как производителем не была обеспечена платформа возможностью модернизации. На сегодняшний день комплектующие под данную платформу являются востребованными. Оказывается, несколько государственных предприятий закупили сверхбыстрые компьютеры. Таким образом, замена комплектующих несколько дешевле полного апгрейда.

Шаг в правильном направлении

Большинство обладателей персональных компьютеров, играющих в игры и предпочитающих работать с документацией и смотреть мультимедиа контент, имеют установленный Intel Pentium 4 (Socket 478). Многие тесты, которые были проведены профессионалами и энтузиастами, свидетельствуют о том, что мощности этой платформы вполне хватает для выполнения всех задач, поставленных перед рядовым пользователем. Такая платформа задействует две модификации ядер:

Willamette;
Prescott.

Их характеристики свидетельствуют о том, что отличия между двумя процессорами небольшие. Последняя модификация предусматривает поддержку 13 новых инструкций, предназначенных для оптимизации данных, которые получили краткое название SSE3. Частотный диапазон функционирования кристаллов пребывает в промежутке 1,4-3,4 ГГц, что вполне удовлетворяет требования рынка. Разработчик пошел на риск и ввел дополнительную ветку процессоров под сокет 478. Данные устройства должны были привлечь внимание ценителей игр и оверлокеров. Новая серия стала называться Intel Pentium 4 CPU Extreme Edition.

Плюсы и минусы 478 сокета

Отзывы ИТ-специалистов свидетельствуют о том, что процессор Intel Pentium 4, который функционирует на платформе 478 сокета, до сих пор считается востребованным. Далеко не каждый пользователь может позволить себе модернизацию, требующую покупки трёх базовых комплектующих. Стоит отметить, что для решения многих задач, предназначенных для улучшения производительности всей системы, стоит просто установить более мощный кристалл. Хорошо, что вторичный рынок ими переполнен, так как процессор долговечнее даже материнской платы.

Если разрабатывать апгрейд, первостепенное внимание следует уделить наиболее мощным представителям этой категории Extreme Edition, которые сегодня показывают высокие результаты при проведении проверки на производительность. В качестве минусов процессоров под Socket 478 стоит выделить рассеиваемую мощность, требующую достойного охлаждения. Таким образом, к расходам пользователя добавляется и потребность покупки достойного кулера.

Процессоры по низкой стоимости

Наверняка, многие пользователи сталкивались с моделями процессоров Intel Pentium 4, представленными на рынке. Они имеют в маркировке надпись Celeron. Данные устройства являются младшей линейкой агрегатов, которые обладают меньшей мощностью благодаря уменьшению инструкций, а также отключения блоков внутренней памяти микропроцессора (кэш). Intel Celeron предусмотрен для пользователей, которым важна в первую очередь стоимость компьютера, а не его производительность. Многие владельцы подобных устройств высказывают мнение, что младшая линейка процессоров считается отбраковкой в ходе производства кристаллов Intel Pentium 4.

Это предположение возникло на рынке в 1999 году, когда некоторые энтузиасты доказали, что Pentium 2 и его младшая модель Celeron представляют собой один и тот же процессор. Правда, за прошлые годы ситуация сильно изменилась. Теперь разработчик обладает отдельной линией по выпуску сравнительно дешевого устройства, предназначенного для нетребовательных покупателей. Кроме того, стоит помнить о том, что существует еще конкурент AMD, претендующий на вытеснение компании Intel с рынка. Таким образом, все ценовые ниши должны быть заняты высококачественной продукцией.

Новый виток эволюции

Большинство специалистов, работающих в области компьютерных технологий, имеют мнение, что именно возникновение на рынке процессора Intel Pentium 4 Prescott ознаменовало начало эпохи устройств с несколькими ядрами, а также завершило гонку за гигагерцами. С внедрением новых технологий разработчику потребовалось перейти на сокет 775, который и позволил раскрыть потенциал персональных компьютеров в работе с программами и динамическими играми, нуждающимися в больших объемах ресурсов.

Данные статистики свидетельствуют о том, что более 50% всех устройств, существующих на планете, способны работать на легендарном разъёме Socket 775, представленном компанией Intel. Выход процессора Intel Pentium D вызвал ажиотаж на рынке, так как у разработчика на одном ядре получалось запустить два потока инструкций, создавая тем самым прообраз двухъядерного устройства.

Данная технологи стала называться Hyper-threading. На сегодняшний день она является передовым решением в процессе производства кристаллов, обладающих высокой мощностью. Не стала останавливаться на достигнутом компания Intel и презентовала технологии Dual Core, Core 2 Duo и Core 2 Quad, имеющие на аппаратном уровне по несколько микропроцессоров на одном кристалле.

Двуликие процессоры

Если взять ориентир на критерий «цена-качество», то в преимуществе оказываются процессоры, имеющие два ядра. Они отличаются такими важными характеристиками, как низкая себестоимость и высокая производительность. Микропроцессоры Intel Pentium Dual Core и Core 2 Duo считаются наиболее продаваемыми в мире. Основное отличие заключается в том, что последний обладает двумя физическими ядрами, работающими независимо друг от друга. Что касается процессора Dual Core, он выполнен в виде двух контроллеров, установленных на одном кристалле, совместная работа которых неразрывно связана между собой.

Правда, частотный диапазон устройств, обладающих двумя ядрами, слегка занижен и находится в промежутке 2-2,66 ГГц. Основная проблема заключается в рассеиваемой мощности кристалла. Он довольно сильно нагревается на повышенных частотах. В качестве примера можно привести восьмую линейку Intel Pentium D (D820-D840). Они первыми получили два раздельных ядра, а также рабочие частоты, превышающие 3 ГГц. Потребляемая мощность данных процессоров достигает около 130 Вт.

Перебор с четырьмя ядрами

Усовершенствованные устройства, имеющие четыре ядра ядрами Intel(R) Pentium(R) 4 были рассчитаны на потребителей, которые стремятся приобрести комплектующие с запасом на будущее. Но рынок программного обеспечения вдруг остановился. Таким образом, разработка, тестирование, а также внедрение приложений осуществляется для оборудования, которые имеют одно или два ядра максимум. Что же делать с системами, которые обладают 6, 8 и более микропроцессорами?

Это обыкновенный маркетинговый ход, который ориентирован на потенциальных покупателей, желающих приобрести компьютер или ноутбук самой высокой мощности, существующей в мире. Можно провести аналогию с мегапикселями на фотоаппарате – лучшим оказывается не тот, на котором написано 20 Мп, а устройство с большей матрицей и фокусным расстоянием. В процессорах значение имеет набор инструкций, обрабатывающиеся программным кодом приложения. Они и выдают результат пользователю.

Таким образом, программисты должны оптимизировать этот ход, чтобы микропроцессор его без проблем и с высокой скоростью мог обработать. Стоит отметить, что слабых компьютеров на рынке много, поэтому производителям становится выгодно разрабатывать нересурсоёмкие программы. Из этого можно сделать вывод, что большая мощность компьютера на этом этапе эволюции не требуется.

Советы по модернизации

Обладателям процессора Intel Pentium 4 (775 сокет), которые хотят провести модернизацию с минимальными затратами, рекомендуется посмотреть в сторону вторичного рынка. Сначала необходимо ознакомиться с техническими характеристиками материнской платы, установленной в системе. Совершить это легко на официальном сайте разработчика. Там следует найти раздел «поддержка процессоров». Затем в средствах массовой информации нужно отыскать таблицу производительности процессоров, а после этого сравнить ее с характеристиками материнской платы, отобрав несколько оптимальных вариантов. Также необходимо изучить отзывы по выбранным устройствам.

Затем предлагается приступить к поиску требуемого процессора, который уже был в употреблении. Для большинства платформ, где осуществляется поддержка работы микропроцессоров с четырьмя ядрами, желательно устанавливать Intel Core Quad 6600. Когда система способна работать лишь с двухъядерными кристаллами, следует найти серверный вариант Intel Xeon или инструмент, предназначенный для оверлокера Intel Extreme Edition. Их цена на рынке пребывает в промежутке 800-1000 рублей, что значительно дешевле любого апгрейда.

Рынок мобильных устройств

Кроме стационарных компьютеров, процессоры Intel Pentium 4 могут быть установлены на ноутбуки. Для этого разработчики предусмотрели отдельную линейку, которая в собственной маркировке содержала букву «М». Что касается характеристик мобильных процессоров, они были аналогичны стационарным компьютерам. Правда, наблюдался заниженный частотный диапазон. Таким образом, наибольшей мощностью среди процессоров для ноутбуков обладает Pentium 4M 2,66 ГГц. Хотя, с развитием платформ в мобильных версиях настолько все напутано, что даже сам разработчик Intel до сегодняшнего дня не предоставил дерево развития процессоров на собственном официальном сайте.

С применением 478-контактной платформы в ноутбуках компания изменяла только технологию обработки процессорного кода. Как результат, на одном сокете получается развести множество процессоров. Наибольшей популярностью, о чем свидетельствуют данные статистики, пользуется кристалл Intel Pentium Dual Core. Стоит отметить, что он является самым дешёвым устройством в производстве, а его рассеиваемая мощность достаточно мала, если сравнивать с аналогами.

Гонка за энергосбережением

Следует заметить, что для компьютеров потребляемая процессором мощность не считается критичной для системы. В ситуации с ноутбуком дело обстоит несколько иначе. В данном случае устройства Intel Pentium 4 вытеснены менее энергозависимыми микропроцессорами. Если пользователь ознакомится с тестами мобильных процессоров, он сможет убедиться, что по производительности старый Core 2 Quad, входящий в линейку Pentium 4, не особо отстаёт от современного кристалла Core i5. Что касается энергопотребления последнего, оно в 3,5 раза меньше. Таким образом, различие отражается на автономности работы устройства. Если проследить за рынком мобильных процессоров, легко определить, что разработчик снова вернулся к технологиям, которые были популярны в прошлом десятилетии.

Всем привет Затрону тему процессоров, а то пишу все о программах. Поговорим про мой любимый Pentium 4, конечно он старый, но это был первый мой процессор по настоящему мощный. Да и цена его была также немаленькой, можно тоже сказать что мощной.

Если вы решили собрать себе компьютер на базе Pentium 4, то наверно вы очень редкий человек, ибо мне трудно в это поверить Pentium 4 сегодня уже отжил свое, а семейство Пентиум дальше развивается, вот у меня на данный момент тоже Pentium, только модель G3220, это сокет 1150. В общем современный пенек.

Но как бы там не было, бывают всякие ситуации, например у вас материнская плата под 775-тый сокет, которая поддерживает максимум только Пентиумы. Таких материнок кстати много, и не все покупатели об этом знают, что там только Пентиумы и Целероны идут, а берут и думаю что можно поставить четырехъядерный Quad.

Так вот, у меня был именно Pentium 4 630 — это стандартная и как мне кажется самая популярная модель. Pentium 4 630 немного греется, но не слишком, и при этом не самый слабый, частота там 3 Ггц. В принципе именно эту модель я и вам советую, единственное что — поищите не модель не 630, а 631, это более новее.

Что я могу сказать о процессоре? Скажу так, хотите верьте, хотите нет — это обычный, нормальный процессор для офисного ПК. И об этом говорят его характеристики — поддержка потоков (технология гипертрейдинг), 2 Мб кэша второго уровня, высокая частота (все таки 3 Ггц). И главное, что так как есть потоки, то в Windows такой процессор видится как двухядерный.

Какие игры, программы потянет Пентиум 4? Офис — потянет. Слишком тяжелые страницы в браузере могут работать медленно, это из-за флеш технологии. Игры многие потянет, но тут важно понимать, что для того чтобы Пентиум 4 тянул более-менее игры, нужно чтобы была мощная видеокарта. Тогда на минимальных настройках играть во многие можно. И перед тем как думать, что потянет Пентиум, а что нет, подумайте про оперативку. Вам нужно минимум 2 Гб для более-менее нормального компа, а лучше все 4 Гб, чтобы и в игры пошпилить. Тип оперативки не играет в данном случае большой роли, что DDR1 что DDR2 — разница будет минимальной.

А что еще на такой комп поставить еще SSD накопитель? Тогда комп будет еще быстрее и не каждый поверит что там процессор 10-летнй давности стоит

Какой самый мощный Pentium 4? Хм, хороший вопрос. Я был обладателем такой модели, их два, разница только в поддержке технологии виртуализации. Это Pentium 4 670 и 672 — эти две модели имеют тактовую частоту 3.8 Ггц (у меня была 670 модель), и конечно это хорошо ощутимо. То есть Windows и программы реально работали куда быстрее, чем на 630-той модели.

Какие минусы у процессоров Pentium 4? Главные минусы которые я вижу, это то сколько они потребляют энергии и температура. Все это так, как у современных топовых процов. Вообще-то это и норма, ибо на то время, а это 2004-2005 годы, тогда конечно Pentium 4 считался топовым и мощным. Температура без специального кулера может быть 60 градусов, это в обычном рабочем состоянии, при том что технологии энергосбережения развиты в Пентиумах мягко говоря слабо.

Потребляют Pentium 4 примерно 80 ватт, это на 775-том сокете. На 478 сокете немного меньше — под 70 ватт. Учтите это, при том что мой Pentium G3220 потребляет всего 54 ватт, но по производительности далеко обходит даже разогнанный Пентиум например до 4 ГГц. Вот такие дела.

Зато цена сегодня за эти процессоры очень низкая, можно брать чуть ли не по кг

Вообще есть много хороших моделей, я советую просто смотреть на индекс модели, все что начинается от 630 — это более-менее нормальные, но чем выше индекс, тем больше температура. Есть еще 660, там частота 3.6 Ггц (если не ошибаюсь). Есть два типа индексов или два типа моделей процессоров Pentium 4, это 600-тая линейка и 500-тая. Отличия в основном в кэше, в 500-той линейке он составляет 1 мб. Это все относится к 775-тому сокету.

478 сокет также имеет в своем роду топовые Пентуим 4, там максимальная частота 3.4 (в 775 сокете 3.8) и также в самых топовых моделях есть потоки, то есть гипертрейдинг. То есть можно сказать, что первый псевдо-двухядерный процессор пользователи могли увидеть именно на 478 сокете и примерно в 2002-2003 году. Но сейчас не так часто можно встретить б/у процессоры на 478 сокет и с наличием потоков. Кстати технология потоков была позаимствованная у серверных процессоров.

Введение

Перед началом сезона летних отпусков оба ведущих производителя процессоров, AMD и Intel, выпустили последние модели процессоров в своих современных линейках CPU, нацеленных на использование в высокопроизводительных PC. Сначала сделала последний шаг перед предстоящим качественным скачком AMD и примерно с месяц назад представила Athlon XP 3200+ , который, как предполагается, станет самым быстрым представителем семейства Athlon XP. Дальнейшие же планы AMD в этом секторе рынка связываются уже с процессором следующего поколения с x86-64 архитектурой, Athlon 64, который должен появится в сентябре этого года. Intel же выждал небольшую паузу и представил последний из Penlium 4 на 0.13-микронном ядре Northwood только сегодня. В итоге, заключительной моделью в этом семействе стал Pentium 4 с частотой 3.2 ГГц. Пауза перед выходом следующего процессора для настольных PC, основанного на новом ядре Prescott, продлится до четвертого квартала, когда Intel вновь поднимет планку быстродействия своих процессоров для настольных компьютеров благодаря росту тактовой частоты и усовершенствованной архитектуре.

Следует отметить, что за время противостояния архитектур Athlon и Pentium 4, показала себя более масштабируемой архитектура от Intel. За период существования Pentium 4, выпускаемых по различным технологическим процессам, их частота выросла уже более чем вдвое и без проблем достигла величины 3.2 ГГц при использовании обычного 0.13-микронного технологического процесса. AMD же, задержавшаяся со своими Athlon XP на отметке 2.2 ГГц, не может похвастать на настоящий момент столь же высокими частотами своих процессоров. И хотя на одинаковых частотах Athlon XP значительно превосходит по быстродействию Pentium 4, постоянно увеличивающийся разрыв в тактовых частотах сделал свое дело: Athlon XP 3200+ с частотой 2.2 ГГц назвать полноценным конкурентом Penium 4 3.2 ГГц можно лишь со значительными оговорками.

На графике ниже мы решили показать, как росли частоты процессоров семейств Pentium 4 и Athlon за последние три года:

Как видим, частота 2.2 ГГц является для AMD непреодолимым барьером, покорен который будет в лучшем случае только лишь во второй половине следующего года, когда AMD переведет свои производственные мощности на использование 90-нанометровой технологии. До этих же пор даже процессоры следующего поколения Athlon 64 будут продолжать иметь столь невысокие частоты. Смогут ли они при этом составить достойную конкуренцию Prescott – сказать трудно. Однако, похоже, AMD ждут тяжелые проблемы. Prescott, обладающий увеличенным кешем первого и второго уровня, усовершенствованной технологией Hyper-Threading и растущими частотами может стать гораздо более привлекательным предложением, нежели Athlon 64.

Что касается процессоров Pentium 4, то их масштабируемости можно только позавидовать. Частоты Pentium 4 плавно увеличиваются с самого момента выхода этих процессоров. Небольшая пауза, наблюдающаяся летом-осенью этого года, объясняется необходимостью внедрения нового технологического процесса, но она не должна повлиять на расстановку сил на процессорном рынке. Включив технологию Hyper-Threading и переведя свои процессоры на использование 800-мегагерцовой шины, Intel добился ощутимого превосходства старших моделей своих CPU над процессорами конкурента и теперь может ни о чем не беспокоиться, по крайней мере, до начала массового распространения Athlon 64.

Также на графике выше мы показали и ближайшие планы компаний AMD и Intel по выпуску новых CPU. Похоже, AMD в ближайшее время не должна питать никаких иллюзий по поводу своего положения на рынке. Борьба с Intel на равных для нее заканчивается, компания возвращается в привычную для себя роль догоняющего. Впрочем, долгосрочные прогнозы строить пока рано, посмотрим, что даст для AMD выход Athlon 64. Однако, судя по сдержанной реакции разработчиков программного обеспечения на технологию AMD64, никакой революции с выходом следующего поколения процессоров от AMD не произойдет.

Intel Pentium 4 3.2 ГГц

Новый процессор Pentium 4 3.2 ГГц, который Intel анонсировал сегодня, 23 июня, с технологической точки зрения ничего особенного собой не представляет. Это все тот же Northwood, работающий на частоте шины 800 МГц и поддерживающий технологию Hyper-Threading. То есть, по сути, процессор полностью идентичен (за исключением тактовой частоты) Pentium 4 3.0 , который был анонсирован Intel в апреле.

Процессор Pentium 4 3.2 ГГц, как и предшественники, использует ядро степпинга D1

Единственный факт, который следует отметить в связи с выходом очередного процессора Pentium 4 на ядре Northwood – это вновь возросшее тепловыделение. Теперь типичное тепловыделение Pentium 4 3.2 ГГц составляет порядка 85 Вт, а максимальное - ощутимо превышает величину 100 Вт. Именно поэтому использование грамотно спроектированных корпусов является одним из необходимых требований при эксплуатации систем на базе Pentium 4 3.2 ГГц. Одного вентилятора в корпусе теперь явно недостаточно, кроме того, необходимо следить и за тем, чтобы воздух в районе размещения процессора хорошо вентилировался. Intel также говорит и о том, что температура воздуха, окружающего процессорный радиатор, не должна превышать 42 градуса.

Ну и еще раз напомним, что представленный Pentium 4 3.2 ГГц – последний CPU от Intel для высокопроизводительных настольных систем, основанный на 0.13-микронной технологии. Следующий процессор для таких систем будет использовать уже новое ядро Prescott, изготавливаемое по 90-нанометровой технологии. Соответственно, тепловыделение будущих процессоров для настольных PC будет меньше. Следовательно, Pentium 4 3.2 ГГц так и останется рекордсменом по тепловыделению.

Официальная цена на Pentium 4 3.2 ГГц составляет $637, а это значит, что данный процессор является самым дорогим CPU для настольных компьютеров на сегодняшний день. Более того, Intel рекомендует использовать новинку с недешевыми материнскими платами на базе набора логики i875P. Однако, как мы знаем, данным требованием можно пренебречь: многие более дешевые системные платы на базе i865PE обеспечивают аналогичный уровень производительности благодаря активизации производителями технологии PAT и в наборе логики i865PE.

Как мы тестировали

Целью данного тестирования являлось выяснение того уровня производительности, который может обеспечить новый Pentium 4 3.2 ГГц по сравнению с предшественниками и старшими моделями конкурирующей линейки Athlon XP. Таким образом, в тестировании помимо Pentium 4 3.2 ГГц приняли участие Petnium 4 3.0 ГГц, Athlon XP 3200+ и Athlon XP 3000+. В качестве платформы для тестов Pentium 4 мы выбрали материнскую плату на чипсете i875P (Canterwood) с двухканальной DDR400 памятью, а тесты Athlon XP проводились при использовании материнской платы на базе наиболее производительного чипсета NVIDIA nForce 400 Ultra.

Состав тестовых систем приведен ниже:

Примечания:

  • Память во всех случаях эксплуатировалась в синхронном режиме с FSB в двухканальной конфигурации. Использовались наиболее агрессивные тайминги 2-2-2-5.
  • Тестирование выполнялось в операционной системе Windows XP SP1 с установленным пакетом DirectX 9.0a.

Производительность в офисных приложениях и приложениях для создания контента

В первую очередь по сложившейся традиции мы измерили скорость процессоров в офисных приложениях и приложениях, работающих с цифровых контентом. Для этого мы воспользовались тестовыми пакетами семейства Winstone.

В Business Winstone 2002, включающем в себя типовые офисные бизнес-приложения, на высоте оказываются процессоры семейства Athlon XP, производительность которых ощутимо превосходит скорость процессоров конкурирующего семейства. Данная ситуация достаточно привычна для этого теста и обуславливается как особенностями архитектуры Athlon XP, так и большим объемом кеш-памяти у ядра Barton, суммарная емкость которой благодаря эксклюзивности L2 достигает 640 Кбайт.

В комплексном тесте Multimedia Content Creation Winstone 2003, измеряющем скорость работы тестовых платформ в приложениях для работы с цифровым контентом, картина несколько иная. Процессоры Pentium 4, имеющие NetBurst архитектуру и обладающие высокоскоростной шиной с пропускной способностью 6.4 Гбайта в секунду оставляют старшие модели Athlon XP далеко позади.

Производительность при обработке потоковых данных

Большинство приложений, работающих с потоками данных, как известно, работает быстрее на процессорах Pentium 4. Здесь раскрываются все преимущества NetBurst архитектуры. Поэтому, результат, полученный нами в WinRAR 3.2, не должен никого удивлять. Старшие Pentium 4 значительно обгоняют по скорости сжатия информации топовые Athlon XP.

Аналогичная ситуация наблюдается и при кодировании звуковых файлов в формат mp3 кодеком LAME 3.93. Кстати, данный кодек поддерживает многопоточность, поэтому высокие результаты Pentium 4 здесь можно отнести и на счет поддержки этими CPU технологии Hyper-Threading. В итоге, Pentium 4 3.2 обгоняет старший Athlon XP с рейтингом 3200+ почти на 20%.

В данное тестирование мы включили результаты, полученные при измерении скорости кодирования AVI ролика в формат MPEG-2 одним из лучших кодеров, Canopus Procoder 1.5. Как это не удивительно, Athlon XP в данном случае показывает слегка более высокую производительность. Впрочем, отнести это, скорее всего, следует на счет высокопроизводительного блока операций с плавающей точкой, присутствующего в Athlon XP. SSE2 инструкции процессоров Pentium 4 в данном случае, как мы видим, не могут являться столь же сильной альтернативой. Правда, следует отметить, что разрыв в скорости старших моделей Athlon XP и Pentium 4 совсем небольшой.

Кодирование видео в формат MPEG-4 – еще один пример задачи, где процессоры Pentium 4 с технологией Hyper-Threading и 800-мегагерцовой шиной демонстрирует свои сильные стороны. Превосходство Pentium 4 3.2 над Athlon XP 3200+ в этом тесте составляет почти 20%.

Аналогичная ситуация наблюдается и при кодировании видео при помощи Windows Media Encoder 9: это приложение имеет оптимизацию под набор команд SSE2 и отлично приспособлено для NetBurst архитектуры. Поэтому, совершенно неудивительно, что вновь верхнюю часть диаграммы оккупировали процессоры от Intel.

Производительность в игровых приложениях

После выхода пропатченной версии 3Dmark03 результаты Pentium 4 относительно Athlon XP в этом тесте стали несколько выше. Однако расклад сил это не изменило: Pentium 4 лидировали в этом бенчмарке и ранее.

Pentium 4 подтверждает свое лидерство и в общем зачете в 3Dmark03. Правда, отрыв здесь небольшой: сказывается тот факт, что 3Dmark03 в первую очередь – это тест видеоподсистемы.

После перехода Pentium 4 на использование 800-мегагерцовой шины, Pentium 4 стали обгонять Athlon XP и в более старой версии 3Dmark2001. Причем, отрыв Pentium 4 3.2 ГГц от Athlon XP 3200+ уже достаточно существенен и составляет 6%.

В Quake3 Pentium 4 традиционно обгоняет Athlon XP, поэтому результат удивления не вызывает.

Аналогичная картина наблюдается и в игре Return to Castle Wolfenstein. Это совершенно логично, поскольку данная игра использует тот же движок Quake3.

Одно из немногих приложений, где старшей модели Athlon XP удается удержать лидерство, это – Unreal Tournament 2003. Хочется отметить, что все современные игры не имеют поддержки технологии Hyper-Threading, поэтому в играх потенциал новых Pentium 4 пока раскрывается не полностью.

А вот в Serious Sam 2 Athlon XP 3200+ больше лидером не является. С выходом нового процессора от Intel пальма первенства в этой игре переходит именно к Pentium 4 3.2 ГГц.

Новая игра Splinter Cell, хотя и основана на том же движке, что и Unreal Tournament 2003, быстрее работает на процессорах от Intel.

В целом, остается признать, что быстрейшим процессором для современных 3D игр на данный момент является Pentium 4 3.2 ГГц, обходящий Athlon XP 3200+ в большинстве игровых тестов. Ситуация меняется стремительно. Еще совсем недавно старшие Athlon XP в игровых тестах нисколько не уступали процессорам от Intel.

Производительность при 3D-рендеринге

Поскольку 3ds max 5.1, который мы использовали в данном тестировании, хорошо оптимизирован под многопоточность, Pentium 4, умеющий исполнять два потока одновременно благодаря технологии Hyper-Threading, с большим отрывом оказывается лидером. Даже старший Athlon XP 3200+ не может составить ему никакой конкуренции.

Абсолютно тоже самое можно сказать и про скорость рендеринга в Lightwave 7.5. Впрочем, в некоторых сценах, например при рендеринге Sunset, старшие модели Athlon XP смотрятся не так уж и плохо, однако такие случаи единичны.

Спорить с Pentium 4, выполняющем два потока одновременно, в задачах рендеринга для Athlon XP сложновато. К сожалению, AMD не имеет планов по внедрению технологий, подобных Hyper-Threading даже в будущих процессорах семейства Athlon 64.

Абсолютно аналогичная ситуация наблюдается и в POV-Ray 3.5.

Производительность при научных расчетах

Для тестирования скорости новых CPU от AMD при научных расчетах был использован пакет ScienceMark 2.0. Подробности об этом тесте можно получить на сайте http://www.sciencemark.org . Этот бенчмарк поддерживает многопоточность, а также все наборы SIMD-инструкций, включая MMX, 3DNow!, SSE и SSE2.

То, что в задачах математического моделирования или криптографии процессоры семейства Athlon XP показывают себя с наилучшей стороны, известно давно. Здесь мы видим еще одно подтверждение этого факта. Хотя, надо сказать, свое былое преимущество Athlon XP начинает терять. Например, в тесте Molecular Dinamics на первое место выходит уже новый Pentium 4 3.2 ГГц.

Кроме теста ScienceMark в этом разделе мы решили протестировать и скорость работы новых процессоров в клиенте российского проекта распределенных вычислений MD@home, посвященному расчету динамических свойств олигопептидов (фрагментов белков). Расчет свойств олигопептидов, возможно, сможет помочь изучению фундаментальных свойств белков, тем самым, внеся вклад в развитие науки.

Как видим, задачи молекулярной динамики новые Pentium 4 решают быстрее Athlon XP. Столь высокого результата Pentium 4 достигают благодаря своей технологии Hyper-Threading. Сам клиент MD@home, к сожалению, многопоточность не поддерживает, однако запуск двух клиентских программ в параллели на системах с процессорами с технологией Hyper-Threading позволяет ускорить процесс расчета более чем на 40%.

Выводы

Проведенное тестирование явно показывает, что на очередном этапе конкурентной борьбы Intel удалось одержать победу над AMD. Последний процессор на ядре Northwood обгоняет по своей производительности старшую и последнюю модель Athlon XP в большинстве тестов. За последнее время Intel смог значительно увеличить частоты своих CPU, увеличить частоту их шины, а также внедрить хитрую технологию Hyper-Threading, дающую дополнительный прирост скорости в ряде задач. AMD же, не имея возможности наращивать тактовые частоты своих процессоров ввиду технологических и архитектурных сложностей, не смогла адекватно усилить свои CPU. Не поправило положение даже появление нового ядра Barton: последние модели Pentium 4 оказываются явно сильнее старших Athlon XP. В результате, Pentium 4 3.2 ГГц вполне можно считать наиболее производительным CPU для настольных систем в настоящее время. Такая ситуация продлится по меньшей мере до сентября, когда AMD, наконец, должна будет анонсировать свои новые процессоры семейства Athlon 64.

Необходимо отметить и тот факт, что рейтинговая система, используемая в настоящее время AMD для маркировки своих процессоров, не может больше являться критерием, по которому Athlon XP можно сопоставлять с Pentium 4. Улучшения, которые произошли с Pentium 4, в числе которых следует отметить перевод этих CPU на 800-мегагерцовую шину и внедрение технологии Hyper-Threading, привели к тому, что Pentium 4 с частотой, равной рейтингу соответствующего Athlon XP, оказывается явно быстрее.

В общем, мы с интересом будем ожидать осени, когда и AMD и Intel представят свои новые разработки, Prescott и Athlon 64, которые, возможно, смогут обострить конкурентную борьбу между давними соперниками на процессорном рынке. Сейчас же AMD оказывается оттеснена Intel в сектор недорогих процессоров где, впрочем, эта компания чувствует себя превосходно: Celeron по сравнению с Athlon XP – откровенно слабый соперник.

Лучшие статьи по теме