Гид компьютерного мира - Информационный портал
  • Главная
  • Windows
  • Способы аппроксимации характеристик нелинейных элементов. §3.2 Аппроксимация характеристик нелинейных элементов Аппроксимация нелинейных элементов

Способы аппроксимации характеристик нелинейных элементов. §3.2 Аппроксимация характеристик нелинейных элементов Аппроксимация нелинейных элементов

2.7.1 НЕЛИНЕЙНЫЕ ЦЕПИ И АППРОКСИМАЦИЯ ХАРАКТЕРИСТИК НЕЛИНЕЙНЫХ ЭЛЕМЕНТОВ

Все цепи, рассматриваемые до сих пор , относились к классу линейных систем. Элементы таких цепей R, L и С являются постоянными и не зависят от воздействия. Линейные цепи описываются линейными дифференциальными уравнениями с постоянными коэффициентами.

Если элементы электрической цепи R, L и С зависят от воздействия , то цепь описывается нелинейным дифференциальным уравнением и является нелинейной. Например, для колебательного RLC -контура, сопротивление которого зависит от напряжения u c , получим:

. (1)

Такой колебательный контур является нелинейным. Элемент электрической цепи, параметры которого зависят от воздействия, называется нелинейным . Различают резистивные и реактивные нелинейные элементы.

Для нелинейного резистивного элемента характерна нелинейная связь между током i и напряжением u , т. е, нелинейная характеристика i = F(u). Наиболее распространенными резистивными нелинейными элементами являются ламповые и полупроводниковые приборы, используемые для усиления и преобразования сигналов. На рисунке 12.1 приведена ВАХ типового нелинейного элемента (полупроводникового диода).

Для резистивных нелинейных элементов важным параметром является их сопротивление, которое в отличие от линейных резисторов не является постоянным, а зависит от того, в какой точке ВАХ оно определяется .

Рисунок 12.1 - ВАХ нелинейного элемента

По ВАХ нелинейного элемента можно определить сопротивление как

(2)

где U 0 - приложенное к нелинейному элементу постоянное напряжение ;

I 0 = F(U 0 ) — протекающий по цепи постоянный ток . Это сопротивление постоянному току (или статическое) . Оно зависит от приложенного напряжения.

Пусть на нелинейный элемент действует напряжение u = U 0 + U m cos w t , причем амплитуда U m , переменной составляющей достаточно мала (рисунок 12.2 ), так что тот небольшой участок ВАХ в пределах которого действует переменное напряжение, можно считать линейным . Тогда ток. протекающий через нелинейный элемент, повторит по форме напряжение : i = I 0 + I m cos w t.

Определим сопротивление R диф как отношение амплитуды переменного напряжения U m к амплитуде переменного тока I m (на графике это отношение приращения напряжения D u к приращению тока D i ):

(3)

Рисунок 12.2 - Воздействие малого гармонического сигнала на нелинейный элемент

Это сопротивление называется дифференциальным (динамическим) и представляет собой сопротивление нелинейного элемента переменному току малой амплитуды. Обычно переходят к пределу этих приращений и определяют дифференциальное сопротивление в виде R диф =du/di.

Приборы, имеющие падающие участки на ВАХ, называются приборами с отрицательным сопротивлением, так как на этих участках производные di/du < 0 и du/di < 0.

К нелинейным реактивным элементам относятся нелинейная емкость и нелинейная индуктивность. Примером нелинейной емкости может служить любое устройство обладающее нелинейной вольт-кулонной характеристикой q = F(u) (например, вариконд и варикап). Нелинейной индуктивностью является катушка с ферромагнитным сердечником, обтекаемая сильным током, доводящим сердечник до магнитного насыщения.

Одной из важнейших особенностей нелинейных цепей является то, что в них не выполняется принцип наложения. Поэтому невозможно предсказать результат воздействия суммы сигналов, если известны реакции цепи на каждое слагаемое воздействия. Из сказанного вытекает непригодность для анализа нелинейных цепей временного и спектрального методов, которые применялись в теории линейных цепей.

Действительно, пусть вольт-амперная характеристика (ВАХ) нелинейного элемента описывается выражением i = a u 2 . Если на такой элемент действует сложный сигнал u = u 1 + u 2 , то отклик i = a (u 1 + u 2 ) 2 = a u 1 2 + a u 2 2 + 2 a u 1 u 2 отличается от суммы откликов на действие каждой составляющей в отдельности (a u 1 2 + a u 2 2 ) наличием компоненты 2 a u 1 u 2 , которая появляется только в случае одновременного воздействия обеих составляющих.

Рассмотрим вторую отличительную особенность нелинейных цепей . Пусть u = u 1 + u 2 = U m1 cos w 0 t + U m2 cos W t ,

где U m1 и U m2 - амплитуды напряжений u 1 и u 2 .

Тогда ток в нелинейном элементе с ВАХ i = a u 2 будет иметь вид:

(4)

На рисунке 12.3 построены спектры напряжения и тока. Все спектральные компоненты тока оказались новыми , не содержащимися в напряжении. Таким образом, в нелинейных цепях возникают новые спектральные компоненты . В этом смысле нелинейные цепи обладают гораздо большими возможностями, чем линейные, и широко используются для преобразований сигналов, связанных с изменением их спектров.

При изучении же теории нелинейных цепей можно не учитывать устройство нелинейного элемента и опираться только на его внешние характеристики подобно тому, как при изучении теории линейных цепей не рассматривают устройство резисторов конденсаторов и катушек и пользуются только их параметрами R, L и С .

Рисунок 12.3 - Спектры напряжения и тока квадратичного нелинейного элемента

Иллюстрация указанного воздействия на реальный полупроводниковый диод

2.7.2 Аппроксимация характеристик нелинейных элементов

Как правило, ВАХ нелинейных элементов i = F(u) получают экспериментально, поэтому чаще всего они заданы в виде таблиц или графиков . Чтобы иметь дело с аналитическими выражениями , приходится прибегать к аппроксимации.

Обозначим заданную таблично или графически ВАХ нелинейного элемента i = F V (u), а аналитическую функцию , а ппроксимирующую заданную характеристику, i = F(u, a 0 , a 1 , a 2 , … , a N ). где a 0 , a 1 , … , a N — коэффициенты этой функции, которые нужно найти в результате аппроксимации.

А) В методе Чебышева коэффициенты a 0 , a 1 , … , a N функции F(u) находятся из условия:

, (5)

т. е. они определяются в процессе минимизации максимального уклонения аналитической функции от заданной. Здесь u k , k = 1, 2, ..., G — выбранные значения напряжения u.

При среднеквадратичном приближении коэффициенты a 0 , a 1 , …, a N должны быть такими, чтобы минимизировать величину

(6)

Б) Приближение функции по Тейлору основано на представлении функции i = F(u) рядом Тейлора в окрестности точки u = U 0 :

(7)

и определении коэффициентов этого разложения. Если ограничиться первыми двумя членами разложения в ряд Тейлора, то речь пойдет о замене сложной нелинейной зависимости F(u) более простой линейной зависимостью . Такая замена называемся линеаризацией характеристик.

Первый член разложения F(U 0 ) = I 0 представляет собой постоянный ток в рабочей точке при u = U 0 , а второй ч лен

- (8)

дифференциальную крутизну вольт-амперной характеристики в рабочей точке , т. е. при u = U 0 .

В) Наиболее распространенным способом приближения заданной функции является интерполяция (метод выбранных точек), при которой к оэффициенты a 0 , a 1 , …, a N аппроксимирующей функции F(u) находятся из равенства этой функции и заданной F x (u) в выбранных точках (узлах интерполяции) u k = 1, 2, ..., N+1.

Д) Степенная (полиномиальная ) аппроксимация. Такое название получила аппроксимация ВАХ степенными полиномами:

(9)

Иногда бывает удобно решать задачу аппроксимации заданной характеристики в окрестности точки U 0 , называемой рабочей . Тогда используют степенной полином

(10)

Степенная аппроксимация широко используется при анализе работы нелинейных устройств, на которые подаются относительно малые внешние воздействия , поэтому требуется достаточно точное воспроизведение нелинейности характеристики в окрестности рабочей точки.

Е) Кусочно-линейная аппроксимация. В тех случаях, когда на нелинейный элемент воздействуют напряжения с большими амплитудами, можно допустить более приближенную замену характеристики нелинейного элемента и использовать более простые аппроксимирующие функции . Наиболее часто при анализе работы нелинейного элемента в таком режиме реальная характеристика заменяется отрезками прямых линий с различными наклонами .

С математической точки зрения это означает, что на каждом заменяемом участке характеристики используются степенные полиномы первой степени (N = 1 ) с различными значениями коэффициентов a 0 , a 1 , …, a N .

Таким образом, задача аппроксимации ВАХ нелинейных элементов заключается в выборе вида аппроксимирующей функции и определении ее коэффициентов одним из указанных выше методов.

Воздействие гармонического сигнала на цепь с нелинейным элементом

Характеристики реальных нелинейных элементов, которые определяют обычно с помощью экспериментальных исследований, имеют сложный вид и представляются в виде таблиц или графиков. В то же время для анализа и расчета цепей необходимо аналитическое представление характеристик, т.е. представление в виде достаточно простых функций. Процесс составления аналитического выражения для характеристик, представленных графически или таблично, называется аппроксимацией.

При аппроксимации решаются следующие проблемы:

1. Определение области аппроксимации, которая зависит от диапазона изменения входных сигналов.

2. Определение точности аппроксимации. Понятно, что аппроксимация дает приблизительное представление характеристики в виде какого-либо аналитического выражения. Поэтому необходимо количественно оценить степень приближения аппроксимирующей функции к экспериментально определенной характеристике. Чаще всего используются:

показатель равномерного приближения – аппроксимирующая функция не должна отличаться от заданной функции более чем на некоторое число , т.е.

показатель среднего квадратического приближения – аппроксимирующая функция не должна отличаться от заданной функции в среднем квадратическом приближении более чем на некоторое число , т.е.

узловое приближение (интерполяционное) – аппроксимирующая функция должна совпадать с заданной функцией в некоторых выбранных точках.

Существуют различные способы аппроксимации. Наиболее часто для аппроксимации ВАХ применяют аппроксимацию степенным полиномом и кусочно-линейную аппроксимацию, реже – аппроксимацию с использованием показательных, тригонометрических или специальных функций (Бесселя, Эрмита и др.).

7.2.1. Аппроксимация степенным полиномом

Нелинейную вольт-амперную характеристику в окрестности рабочей точки представляют конечным числом слагаемых ряда Тейлора:

Количество членов ряда определяется требуемой точностью аппроксимации. Чем больше членов ряда, тем точнее аппроксимация. На практике необходимой точности добиваются, используя аппроксимацию полиномами второй и третьей степени. Коэффициенты – это числа, которые достаточно просто определяются из графика ВАХ, что иллюстрируется примером.

Пример.

Аппроксимировать представленную на рис. 7.1,а ВАХ в окрестности рабочей точки степенным полиномом второй степени, т.е. полиномом вида

Выберем область аппроксимации от 0,2 В до 0,6 В. Для решения задачи необходимо определить три коэффициента . Поэтому ограничимся тремя узловыми точками (в середине и на границах выбранного диапазона), для которых составляем систему трех уравнений:


Рис. 7.1. Аппроксимация ВАХ транзистора

Решая систему уравнений, определяем , , . Следовательно, аналитическое выражение, описывающее график ВАХ, имеет вид

Заметим, что аппроксимация степенным полиномом используется в основном для описания отдельных фрагментов характеристик. При значительных отклонениях входного сигнала от рабочей точки точность аппроксимации может значительно ухудшиться.

Если ВАХ задана не графически, а какой-либо аналитической функцией и возникла необходимость представить ее степенным полиномом, то коэффициенты вычисляются по известной формуле

Нетрудно заметить, что представляет собой крутизну ВАХ в рабочей точке. Значение крутизны существенно зависит от положения рабочей точки.

В некоторых случаях удобнее характеристику представлять рядом Маклорена

7.2.2. Кусочно-линейная аппроксимация

Если входной сигнал изменяется по величине в больших пределах, то ВАХ можно аппроксимировать ломаной линией, состоящей из нескольких отрезков прямых. На рис. 7.1,б показана ВАХ транзистора, аппроксимированная тремя отрезками прямых.

Математическая формула аппроксимированной ВАХ

Данный вид аппроксимации связан с двумя важными параметрами нелинейного элемента: напряжением начала характеристики и ее крутизной . Для увеличения точности аппроксимации увеличивают количество отрезков линий. Однако это усложняет математическую формулу ВАХ.

Часто необходимо иметь аналитические выражения для вольт-амперных характеристик нелинейных элементов. Эти выражения могут лишь приближенно представлять ВАХ, поскольку физиче­ские закономерности, которым подчиняются зависимости между напряжениями и токами в нелинейных при­борах, не выражаются аналитически.

Задача приближенного аналитического представления функции, заданной графически или таблицей значений, в заданных пределах изменения ее аргумента (независимой переменной) предполагает. При этом во-первых, делается выбор аппроксимирующей функции, т. е. функции, с помощью которой приближенно представляется заданная зависи­мость, и, во-вторых, выбор критерия оценки «близости» этой зави­симости и аппроксимирующей ее функции.

В качестве аппроксимирующих функций используются, чаще всего, алгебраические полиномы, некоторые дробные рациональ­ные, экспоненциальные и трансцендентные функции или совокупность линейных функций (отрезков пря­мых линий).

Будем считать, что ВАХ нелинейного элемента i = F (u ) задана графически, т. е. определена в каждой точке интервала U min и U max , и представляет собой однозначную непрерывную функцию переменной и. Тогда задача аналитического представления вольт-амперной характеристики может рассматриваться как задача ап­проксимации заданной функции ξ(х) выбранной аппроксимирую­щей функцией f (x ).

О близости аппроксимирующей f (x ) и аппроксимируемой ξ(х ) функций или, иными словами, о погрешности аппроксимации, обычно судят по наибольшему абсолютному значению разности между этими функциями в интервале аппроксимации а х b , т. е. по величине

Λ = max ‌‌ f (x )- ξ(x )│

Часто критерием близости выбирается среднее квадратичное значение разности между указанными функциями в интервале ап­проксимации.

Иногда под близостью двух функций f(x ) и ξ(x ) понимают сов­падение в заданной точке

x = Хо самих функций и п + 1 их произ­водных.

Наиболее распространенным способом приближения аналитической функции к заданной является интерполяция (метод выбран­ных точек), когда добиваются совпадения функций f(x ) и ξ(x ) в выбранных точках (узлах интерполяции) X k , k = 0, 1, 2, ..., п.

Погрешность аппроксимации может быть достигнута тем мень­шей, чем больше число варьируемых параметров входит в аппрок­симирующую функцию, т. е., например, чем выше степень аппрок­симирующего полинома или чем больше число отрезков прямых содержит аппроксимирующая линейно-ломаная функция. Одно­временно с этим, естественно, растет объем вычислений, как при решении задачи аппроксимации, так и при последующем анализе нелинейной цепи. Простота этого анализа наряду с особенностями аппроксимируемой функции в пределах интервала аппроксимации служит одним из важнейших критериев при выборе типа аппрок­симирующей функции.

В задачах аппроксимации вольт-амперных характеристик элек­тронных и полупроводниковых приборов стремиться к высокой точности их воспроизведения, как правило, нет необходимости ввиду значительного разброса характеристик приборов от образца к образцу и существенного влияния на них дестабилизирующих факторов, например, температуры в полупроводниковых приборах. В большинстве случаев достаточно «правильно» воспроизвести об­щий усредненный характер зависимости i = F (u ) в пределах ее ра­бочего интервала. Для того чтобы была возможность аналитически рассчитывать цепи с нелинейными элементами, необходимо иметь математические выражения для характеристик элементов. Сами эти характеристики обычно являются экспериментальными, т.е. полученными в результате измерений соответствующих элементов, а затем на этой основе формируются справочные (типовые) данные. Процедуру математического описания некоторой заданной функции в математике называют аппроксимацией этой функции. Существует целый ряд типов аппроксимации: по выбранным точкам, по Тейлору, по Чебышеву и др. В конечном итоге необходимо получить математическое выражение, которое с какими-то заданными требованиями удовлетворяло исходной, аппроксимирующей функции.

Рассмотрим простейший способ: метод выбранных точек или узлов интерполяции степенным полиномом.

Необходимо определить коэффициенты полинома. Для этого выбирается (n +1) точек на заданной функции и составляется система уравнений:

Из этой системы находятся коэффициенты а 0 , а 1 , а 2 , …, а n .

В выбранных точках аппроксимирующая функция будет совпадать с исходной, в других точках – отличаться (сильно или нет – зависит от степенного полинома).

Можно использовать экспоненциальный полином:

Второй метод: метод аппроксимации по Тейлору . В этом случае выбирается одна точка, где будет совпадение исходной функции с аппроксимирующей, но дополнительно ставится условие, чтобы в этой точке совпадали еще и производные.

Аппроксимация по Батерворту : выбирается простейший полином:

В этом случае можно определить максимальное отклонение ε на краях диапазона.

Аппроксимация по Чебышеву : является степенной, там устанавливается совпадение в нескольких точках и минимизируется максимальное отклонение аппроксимирующей функции от исходной. В теории аппроксимации функций доказывается, что наиболь­шее по абсолютной величине отклонение полинома f (x ) степени п от непрерывной функции ξ(х ) будет минимально возможным, если в интервале приближения а х b разность

f (x ) - ξ(х ) не мень­ше, чем п + 2 раза принимает свои последовательно чередующиесяпредельные наибольшие f (x ) - ξ(х ) = L > 0 и наименьшие f (x ) - ξ(х ) = - L значения (критерий Чебышева).

Во многих прикладных задачах находит применение полиноми­альная аппроксимация по среднеквадратическому критерию близо­сти, когда параметры аппроксимирующей функции f (x ) выбирают­ся из условия обращения в минимум в интервале аппроксимации а х b квадрата отклонения функции f (x ) от заданной непре­рывной функции ξ(х ), т. е., из условия:

Λ= 1/b-a∫ a [f (x )- ξ(x )] 2 dx = min . (7)

В соответствии с правилами отыскания экстремумов решение задачи сводится к решению системы линейных уравнении, которая образуется в результате приравнивания к нулю первых частных производных функции Λ по каждому из искомых коэффициентов a k аппроксимирующего полинома f (x ), т. е. уравнений

д Λ д a 0 =0;д Λ д a 1 =0;д Λ д a 2 =0, . . . ,д Λ д a n =0. (8)

Доказано, что и эта система уравнений имеет единственное ре­шение. В простейших случаях оно находится аналитически, а в общем случае - численно.

Чебышев установил, что должно для максимальных отклонений выполняться равенство:

В инженерной практике используется еще так называемая кусочно-линейная аппроксимация – это описание заданной кривой отрезками прямых линий.

В пределах каждого из линиаризированных участков вольт-амперной характеристики применимы все методы анализа колебаний в линейных электрических цепях. Ясно, что, чем на большее число линеаризированных участков разбивается заданная вольт-амперная характеристика, тем точнее она может быть аппроксимирована и тем больше объем вычислений в ходе анализа колебаний в цепи.

Во многих прикладных задачах анализа колебаний в нелиней­ных резистивных цепях аппроксимируемая вольт-амперная харак­теристика в интервале аппроксимации с достаточной точностью пред­ставляется двумя или тремя отрезками прямых.

Подобная аппроксимация вольт-амперных характеристик дает в большинстве случаев вполне удовлетворительные по точности результаты анализа колебаний в нели­нейной резистивной цепи при «небольших» по величине воздействи­ях на нелинейный элемент, т. е. ко­гда мгновенные значения токов в нелинейном элементе изменяются в предельно допустимых границах от I = 0 до I = I н

Часто необходимо иметь аналитические выражения для вольт - амперных характеристик нелинейных элементов. Эти выражения могут лишь приближенно представлять ВАХ, поскольку физиче­ские закономерности, которым подчиняются зависимости между напряжениями и токами в нелинейных при­борах, не выражаются аналитически.

Задача приближенного аналитического представления функции, заданной графически или таблицей значений, в заданных пределах изменения ее аргумента (независимой переменной) называется аппроксимацией. При этом во-первых, делается выбор аппроксимирующей функции, т. е. функции, с помощью которой приближенно представляется заданная зависи­мость, и, во-вторых, выбор критерия оценки «близости» этой зави­симости и аппроксимирующей ее функции.

В качестве аппроксимирующих функций используются, чаще всего, алгебраические полиномы, некоторые дробные рациональ­ные, экспоненциальные и трансцендентные функции или совокупность линейных функций (отрезков пря­мых линий).

Будем считать, что ВАХ нелинейного элемента i = fun(u) задана графически, т. е. определена в каждой точке интервала U min и U max , и представляет собой однозначную непрерывную функцию переменной и. Тогда задача аналитического представления вольт-амперной характеристики может рассматриваться как задача ап­проксимации заданной функции ξ(х) выбранной аппроксимирую­щей функцией f (x ).

О близости аппроксимирующей f (x )и аппроксимируемой ξ(х )функций или, иными словами, о погрешности аппроксимации, обычно судят по наибольшему абсолютному значению разности между этими функциями в интервале аппроксимации а х b, т. е. по величине

Δ= max‌‌│ f (x )- ξ(x )│

Часто критерием близости выбирается среднее квадратичное значение разности между указанными функциями в интервале ап­проксимации.

Иногда под близостью двух функций f(x )и ξ(x ) понимают сов­падение в заданной точке

x = Хо самих функций и п + 1 их произ­водных.

Наиболее распространенным способом приближения аналитической функции к заданной является интерполяция (метод выбран­ных точек), когда добиваются совпадения функций f(x )и ξ(x ) в выбранных точках (узлах интерполяции) X k , k = 0, 1, 2, ..., п.

Погрешность аппроксимации может быть достигнута тем мень­шей, чем больше число варьируемых параметров входит в аппрок­симирующую функцию, т. е., например, чем выше степень аппрок­симирующего полинома или чем больше число отрезков прямых содержит аппроксимирующая линейно-ломаная функция. Одно­временно с этим, естественно, растет объем вычислений, как при решении задачи аппроксимации, так и при последующем анализе нелинейной цепи. Простота этого анализа наряду с особенностями аппроксимируемой функции в пределах интервала аппроксимации служит одним из важнейших критериев при выборе типа аппрок­симирующей функции.

В задачах аппроксимации вольт-амперных характеристик элек­тронных и полупроводниковых приборов стремиться к высокой точности их воспроизведения, как правило, нет необходимости ввиду значительного разброса характеристик приборов от образца к образцу и существенного влияния на них дестабилизирующих факторов, например, температуры в полупроводниковых приборах. В большинстве случаев достаточно «правильно» воспроизвести об­щий усредненный характер зависимости i = f (u )в пределах ее ра­бочего интервала. Для того чтобы была возможность аналитически рассчитывать цепи с нелинейными элементами, необходимо иметь математические выражения для характеристик элементов. Сами эти характеристики обычно являются экспериментальными, т.е. полученными в результате измерений соответствующих элементов, а затем на этой основе формируются справочные (типовые) данные. Процедуру математического описания некоторой заданной функции в математике называют аппроксимацией этой функции. Существует целый ряд типов аппроксимации: по выбранным точкам, по Тейлору, по Чебышеву и др. В конечном итоге необходимо получить математическое выражение, которое с какими-то заданными требованиями удовлетворяло исходной, аппроксимирующей функции.

Рассмотрим простейший способ: метод выбранных точек или узлов интерполяции степенным полиномом.

Необходимо определить коэффициенты полинома. Для этого выбирается (n+1) точек на заданной функции и составляется система уравнений:

Из этой системы находятся коэффициенты а 0 , а 1 , а 2 , …, а n .

В выбранных точках аппроксимирующая функция будет совпадать с исходной, в других точках – отличаться (сильно или нет – зависит от степенного полинома).

Можно использовать экспоненциальный полином:

Второй метод: метод аппроксимации по Тейлору . В этом случае выбирается одна точка, где будет совпадение исходной функции с аппроксимирующей, но дополнительно ставится условие, чтобы в этой точке совпадали еще и производные.

Аппроксимация по Батерворту : выбирается простейший полином:

В этом случае можно определить максимальное отклонение ε на краях диапазона.

Аппроксимация по Чебышеву : является степенной, там устанавливается совпадение в нескольких точках и минимизируется максимальное отклонение аппроксимирующей функции от исходной. В теории аппроксимации функций доказывается, что наиболь­шее по абсолютной величине отклонение полинома f (x )степени п от непрерывной функции ξ(х ) будет минимально возможным, если в интервале приближения а х b разность

f(x ) - ξ(х ) не мень­ше, чем п + 2 раза принимает свои последовательно чередующиеся предельные наибольшие f (x ) - ξ(х ) = L > 0 и наименьшие f (x ) - ξ(х ) = -L значения (критерий Чебышева).

Во многих прикладных задачах находит применение полиноми­альная аппроксимация по среднеквадратическому критерию близо­сти, когда параметры аппроксимирующей функции f (x ) выбирают­ся из условия обращения в минимум в интервале аппроксимации а х b квадрата отклонения функции f (x ) от заданной непре­рывной функции ξ(х ), т. е., из условия:

Λ= 1/b-a∫ a [f (x )- ξ(x )] 2 dx = min . (7)

В соответствии с правилами отыскания экстремумов решение задачи сводится к решению системы линейных уравнении, которая образуется в результате приравнивания к нулю первых частных производных функции Λ по каждому из искомых коэффициентов a k аппроксимирующего полинома f (x ), т. е. уравнений

дΛ ∕дa 0 =0; дΛ ∕дa 1 =0; дΛ ∕дa 2 =0, . . . , дΛ ∕дa n =0. (8)

Доказано, что и эта система уравнений имеет единственное ре­шение. В простейших случаях оно находится аналитически, а в общем случае - численно.

Чебышев установил, что должно для максимальных отклонений выполняться равенство:

В инженерной практике используется еще так называемая кусочно-линейная аппроксимация – это описание заданной кривой отрезками прямых линий.

В пределах каждого из линиаризированных участков вольт - амперной характеристики применимы все методы анализа колебаний в линейных электрических цепях. Ясно, что, чем на большее число линеаризированных участков разбивается заданная вольт-амперная характеристика, тем точнее она может быть аппроксимирована и тем больше объем вычислений в ходе анализа колебаний в цепи.

Во многих прикладных задачах анализа колебаний в нелиней­ных резистивных цепях аппроксимируемая вольт - амперная харак­теристика в интервале аппроксимации с достаточной точностью пред­ставляется двумя или тремя отрезками прямых.

Подобная аппроксимация вольт - амперных характеристик дает в большинстве случаев вполне удовлетворительные по точности результаты анализа колебаний в нели­нейной резистивной цепи при «небольших» по величине воздействи­ях на нелинейный элемент, т. е. ко­гда мгновенные значения токов в нелинейном элементе изменяются в предельно допустимых границах от I = 0 до I = I мах

Множество важнейших процессов (нелинейное усиление, модуляция, детектирование, генерация, умножение, деление и преобразование частоты) осуществляется в радиоэлектронных устройствах с помощью нелинейных и параметрических цепей.

В общем случае анализ процесса преобразования сигналов в нелинейных цепях весьма сложная задача, что связано с проблемой решения нелинейных дифференциальных уравнений. При этом неприменим принцип суперпозиции, так как параметры нелинейной цепи при воздействии одного источника входного сигнала отличаются от ее параметров при подключении нескольких источников. Однако исследование нелинейных цепей удается осуществить сравнительно простыми методами, если нелинейный элемент отвечает условиям безынерционности. Физически безынерционность нелинейного элемента (НЭ) означает мгновенное установление отклика на его выходе вслед за изменением входного воздействия. Если говорить строго, то безынерционных нелинейных элементов практически не существует. Все нелинейные элементы – диоды, транзисторы, аналоговые и цифровые микросхемы обладают инерционными свойствами. Вместе с тем, современные полупроводниковые приборы достаточно совершенны по своим частотным параметрам и их удается идеализировать с точки зрения их безынерционности.

Большинство нелинейных радиотехнических цепей и устройств определяется структурной схемой, представленной на рис.2.1. Согласно этой схемы, входной сигнал непосредственно воздействует на нелинейный элемент, к выходу которого подключен фильтр (линейная цепь).

Рисунок. 2.1. Структурная схема нелинейного устройства.

В этих случаях процесс в радиоэлектронной нелинейной цепи можно охарактеризовать двумя независимыми друг от друга операциями. В результате первой операции в безынерционном нелинейном элементе происходит такое преобразование формы входного сигнала, при котором в его спектре появляются новые гармонические составляющие. Вторую операцию осуществляет фильтр, выделяя нужные спектральные составляющие преобразованного входного сигнала.. Меняя параметры входных сигналов и используя различные нелинейные элементы и фильтры, можно осуществить требуемую трансформацию спектра. К такой удобной теоретической модели сводятся многие схемы модуляторов, детекторов, автогенераторов, выпрямителей, умножителей, делителей и преобразователей частоты.

Как правило, нелинейные цепи характеризуются сложной зависимостью между входным сигналом и выходной реакцией, которую в общем виде можно записать так:

U вых (t)=f

В нелинейных цепях с безынерционными НЭ наиболее удобно в качестве воздействия рассматривать входное напряжение U вх (t), а отклика – выходной ток i вых (t), связь между которыми определяется нелинейной функциональной зависимостью:

i вых (t)=f

Данное соотношение аналитически может представлять собой обычную вольт-амперную характеристику НЭ. Такой характеристикой обладают и нелинейный двухполюсник (транзистор, ОУ, цифровая микросхема), работающий в нелинейном режиме при различных амплитудах входного сигнала. Вольт-амперные характеристики (для нелинейных элементов их получают экспериментально0 большинства нелинейных элементов имеют сложный вид, поэтому представление их аналитическими выражениями является достаточно трудной задачей. В радиоэлектронных устройствах широко используются аналитические методы представления нелинейных характеристик различных приборов относительно простыми функциями (или их набором), приближенно отражающими реальные характеристики. Нахождение аналитической функции по экспериментальной характеристике нелинейного элемента называется аппроксимацией. Существуют несколько способов аппроксимации характеристик – степенная, показательная, кусочно-линейная (линейно-ломанная аппроксимация). Наибольшее распространение получили аппроксимация степенным полиномом и кусочно-линейная аппроксимация.

Аппроксимация степенным полиномом. Данный вид аппроксимации особенно эффективен при малых амплитудах (как правило, доли вольта) входных сигналов в тех случаях, когда характеристика НЭ имеет вид гладкой кривой, т.е. кривая и ее производные непрерывны и не имеют скачков. Наиболее часто при аппроксимации в качестве степенного полинома используется ряд Тэйлора

i(u)=a o +a 1 (u-U o)+a 2 (u-U o) 2 +…+a n (u-U o) n , (2.1)

где a o , a 1 ,… a n – постоянные коэффициенты; U o – значение напряжения u, относительно которого ведется разложение в ряд и называемое рабочей точкой. Отметим, что здесь и далее аргументt у функций тока и напряжения для упрощения опущен. Постоянные коэффициенты ряда Тэйлора определяются известной формулой

Оптимальное число членов ряда берется в зависимости от трубуемой точности аппроксимации. Чем больше выбрано членов ряда, тем точнее аппроксимация. Аппроксимацию характеристик обычно удается достаточно точно осуществить полиномом не выше второй – третьей степени. Для отыскания неизвестных коэффициентов ряда необходимо задаться диапазоном U 1 , U 2 нескольких возможных значений напряжения u и положением рабочей точки U o в этом диапазоне. Если требуется определить n коэффициентов ряда, то на заданной характеристике выбирается n+1 точек со своими координатами (i n ,u n). Для упрощения расчетов одну точку совмещают с рабочей точкой U o , имеющей координаты (I o , U o); еще две точки выбираются на границах диапазона u=U 1 и u=U 2 . Остальные точки располагаются произвольно, но с учетом важности аппроксимируемого участка ВАХ. Подставляя координаты выбранных точек в формулу (2.1), составляют систему их n+1 уравнений, которая решается относительно неизвестных коэффициентов a n ряда Тэйлора.

Рис.2.2. Аппроксимация характеристики транзистора степенным полиномом.

Пример 2.1. На рис. 2.2 штриховой линией представлена входная характеристика I б =f(U бэ) транзистора КТ601А. Аппроксимировать заданную характеристику транзистора в диапазоне 0,4…0,8 В полиномом Тэйлора второй степени i б =a o +a 1 (u бэ -U o)+a 2 (u бэ -U o) 2 относительно рабочей точки U o =0,6 В.

Решение . Для упрошения расчетов в качестве точек аппроксимации выберем значения напряжений на границах диапазона и в рабочей точке, т.е. 0,4; 0,6 и

0,8 В. Поскольку выбранным точкам соответствуют токи 0,1; 0,5 и 1,5 мА, то для заданного полинома получим следующую систему уравнений:

0,1=a o + a 1 (0.4-0.6)+ a 2 (0.4-0.6) 2 = a o -0.2a 1 +0.04 a 2

0.5= a o + a 1 (0.6-0.6)+ a 2 (0.6-0.6) 2 = a o

1.5= a o + a 1 (0.8-0.6)+ a 2 (0.8-0.6) 2 = a o +0.2a 1 +0.04 a 2

Решение этой системы уравнений дает значения коэффициентов a o =0,5 мА, a 1 =3,5 мА/В, a 2 =7,5 мА/В 2 . Подставив их в формулу (2.1), находим аппроксимирующую функцию (ее график показан на рисунке сплошной линией): i б =0.5+ 3.5(u б -0.6)+7.5(u б -0.6) 2 .

Кусочно-линейная аппроксимация. В большинстве практических случаев, когда на нелинейный элемент радиоэлектронной цепи воздействует входной сигнал значительный амплитуды, реальную вольт-амперную характеристику нелинейного элемента можно аппроксимировать кусочно-линейной линией, состоящей из нескольких отрезков прямых с различными углами наклона к оси абсцисс. Данная аппроксимация связана непосредственно с двумя важными параметрами нелинейного элемента – напряжением начала характеристики Е н и ее крутизной S. В общем случае дифференциальная крутизна характеристики в рабочей точке определяется отношением приращения тока к приращению напряжения, и при малых их значениях имеем

Уравнение отрезка прямой при кусочно-линейной аппроксимации характеристики записывается в виде:

i={ 0, u

i={ S(u-E н), u>E н (2.4)

Во многих радиотехнических устройствах характеристику нелинейного элемента, к которому подводится сигнал большой амплитуды, удается с приемлемой точностью аппроксимировать лишь двумя отрезками прямых линий.

Пример 2.2. Экспериментально снятая входная характеристика I б =f(U бэ) транзистора КТ601А представлена на рис. 2.3. штриховой линией. Выполнить кусочно-линейную аппроксимацию данной характеристики в окрестности рабочей точки U o =0,6 В.

Решение . В соответствии с заданной вольтамперной характеристикой транзистора находим, что величина тока в рабочей точке I о =0,5 мА. Крутизну характеристики в рабочей точке вычислим приближенно по формуле (2.3). Задав линейное приращение напряжения ∆u бэ = 0.8 - 0.6 = 0.2 B, находим приращение тока ∆i б =

1.5-0.5=1 мА. Тогда S=∆i б /∆u б =1/0.2=5 мА/В.

Рис.2.3. Кусочно-линейная аппроксима- ция характеристики транзистора.

В результате проведенной аппроксимации характеристики ток базы транзистора в окрестности рабочей точки с координатамиI о =0,5 мА, U o =0,6 В. Определится как: i б =0,5+5(u бэ -0,6)=5(u бэ -0,5).

Из этой формулы следует, что при u бэ <0,5 В ток базы транзистора должен принимать отрицательные значения, что не отражается заданной характеристикой. Значит, полученная функция будет аппроксимировать заданную зависимость только при амплитуде входного напряжения u бэ >0,5 В. Если же входное напряжение u бэ <0,5 В, то можно принять i б =0. Таким образом, аппроксимирующая функция (сплошная линия на рисунке), отражающая характеристику транзистора, запишется в следующем виде:

i={ 0, u бэ <0,5

i={ 5(u бэ -0,5), u бэ >0,5

Повышение точности аппроксимации характеристик нелинейных элементов достигается увеличением количества отрезков линий. Однако это усложняет аналитическое выражение аппроксимирующей функции.

Лекция №9.


Похожая информация.


Лучшие статьи по теме