Гид компьютерного мира - Информационный портал
  • Главная
  • Советы
  • Прохождение случайных процессов через линейные и нелинейные цепи. Прохождение случайных процессов через линейные цепи Обзор прохождение сигналов через нелинейные цепи

Прохождение случайных процессов через линейные и нелинейные цепи. Прохождение случайных процессов через линейные цепи Обзор прохождение сигналов через нелинейные цепи

Рассмотрим линейную инерционную систему с известной передаточной функцией или импульсной реакцией . Пусть на вход такой системы поступает стационарный случайный процесс с заданными характеристиками: плотностью вероятности , корреляционной функцией или энергетическим спектром . Определим характеристики процесса на выходе системы: , и .

Наиболее просто можно найти энергетический спектр процесса на выходе системы. Действительно, отдельные реализации процесса на входе являются детерминированными

функциями, и к ним применим аппарат Фурье. Пусть - усеченная реализация длительности Т случайного процесса на входе, а

Ее спектральная плотность. Спектральная плотность реализации на выходе линейной системы будет равна

Энергетический спектр процесса на выходе согласно (3.3.3) будет определиться выражением

(3.4.3)

т.е. будет равен энергетическому спектру процесса на входе, умноженному на квадрат амплитудно-частотной характеристики системы, и не будет зависеть от фазочастотной характеристики.

Корреляционная функция процесса на выходе линейной системы может быть определена как преобразование Фурье от энергетического спектра:

(3.4.4)

Следовательно, при воздействии случайного стационарного процесса на линейную систему на выходе получается также стационарный случайный процесс с энергетическим спектром и корреляционной функцией, определяемыми выражениями (3.4.3) и (3.4.4). Мощность процесса на выходе системы будет равна

(3.4.5)

Плотность распределения вероятности и числовые характеристики сигнала на выходе безынерционной нелинейной цепи.

Баскаков стр. 300 – 302

Прохождение случайных сигналов через нелинейные безинерционные цепи.

Рассмотрим теперь задачу о прохождении случайного процесса через нелинейную систему. В общем случае эта задача весьма сложная, но она значительно упрощается, когда нелинейная система является безынерционной. В безынерционных нелинейных системах значения выходного процесса в данный момент времени определяются значениями входного процесса в тот же самый момент времени. Для нелинейных безынерционных преобразований более простой задачей является определение функций распределения на выходе в гораздо более сложной – определение корреляционной функции или энергетического спектра.



Как отмечалось выше, n - мерная функция распределения случайного процесса по сути дела является функцией распределения n случайных величин, представляющих собой значения случайного процесса в n различных моментов времени, Определение законов распределения функционально преобразованных случайных величин является сравнительно простой задачей.

Рассмотрим простейший пример одномерной случайной величины. Пусть - плотность вероятности случайной величины ζ, которая подвергается нелинейному преобразованию . Определим плотность вероятности случайной величины η. Предположим, что функция такова, что обратная ей функция – однозначна.

Если случайная величина ζ находится в достаточно малом интервале , то вследствие однозначной функциональной зависимости между ζ и η случайная величина η обязательно будет находиться в интервале , где , вероятности этих событий должны быть одинаковыми, т.е. (3.4.13)

откуда находим

(3.4.14)

Производная в последнем выражении берется по абсолютной величине, так как плотность вероятности не может быть отрицательной. Если обратная функция неоднозначная, т.е. имеет несколько ветвей , то для плотности вероятности с использованием теоремы сложения вероятностей можно получить

(3.4.15)

Отметим, что для определения числовых характеристик нелинейно-преобразованных случайных процессов нет необходимости определять их плотности вероятностей. Действительно, в общем случае для начального момента k-го порядка имеем

(3.4.16)

Но согласно (3.4.13) и . Поэтому последнее выражение можно переписать

(3.4.17)

Полученные выражения (3.4.14) и (3.4.15) легко распространить на случай нескольких величин. Приведем здесь лишь окончательный результат для двумерного случая. Если случайные величины и имеют совместную плотность вероятностей , то для случайных величин

(3.4.18)

при однозначности обратных функций

совместная плотность вероятностей будет определяться выражением

Где величина

называется якобианом преобразования и представляет собой отношение элементарных площадей при переходе от одной системы координат к другой. Если , то справедливо равенство

где

Вопрос № 23

Дискретная импульсная последовательность, их спектр.

Баскаков стр. 382-383

Дискретизация периодических сигналов. Дискретное преобразование Фурье (ДПФ). Восстановление исходного сигнала по ДПФ. Обратное дискретное преобразование Фурье (ОДПФ).

Баскаков стр. 388-392

Вопрос № 24

Принцип цифровой обработки (ЦО) сигналов на основе дискретного преобразования Фурье.

Баскаков стр. 400-405

Реализация алгоритмов цифровой фильтрации (трансверсальные ЦФ, рекурсивные ЦФ, импульсная характеристика, сигнал на выходе)

Цифровые фильтры в зависимости от обратной связи бывают рекурсивные (РФ) и нерекурсивные (НФ).

Преимущества нерекурсивных фильтров по сравнению с рекурсивными сводятся к следующему:

Нерекурсивные фильтры могут иметь точно линейную ФЧХ;

Мощность собственных шумов НФ, как правило, гораздо меньше, чем у РФ;

Для НФ проще вычисление коэффициентов.

Недостатки нерекурсивных фильтров по сравнению с рекурсивными сводятся к следующему:

Рекурсивные фильтры позволяют производить обработку сигнала с более высокой точностью, так как они позволяют более правильно реализовать импульсную характеристику без отбрасывания ее «хвоста»;

Схемная реализация РФ намного проще, чем у НФ;

Рекурсивные фильтры позволяют реализовать алгоритмы, вообще не- реализуемые с помощью нерекурсивных фильтров.

Импульсная характеристика рекурсивного фильтра бесконечная, а нерекурсивного конечная.

Баскаков стр. 405-408, 409-411, 413

Вопрос №25

Понятие отношения сигнал/шум, фильтрации и оптимального фильтра.

Отношение сигнал/шум - безразмерная величина, равная отношению мощности полезного сигнала к мощности шума.

Фильтрация - это процесс обработки сигнала частотно-избирательными устройствами с целью изменения спектрального состава сигнала.

Оптимальным линейным фильтром называют частотно-избирательную систему, выполняющую обработку суммы сигнала и шума некоторым наилучшим образом. На выходе максимизирует отношение сигнал/шум.

Баскаков стр. 423-424

Отношение сигнал/шум на выходе согласованного фильтра.

Баскаков стр. 425, 431-432

Характеристики оптимального (согласованного) фильтра для сигналов известной формы (АЧХ, ФЧХ, ИХ).










Сигнал на выходе согласованного фильтра.



В гл. 6 рассматривалась передача различных сигналов через линейные цепи с постоянными параметрами. Связь между входным и выходным сигналами в таких цепях определялась с помощью передаточной функции (спектральный метод) или с помощью импульсной характеристики (метод интеграла наложения).

Аналогичные соотношения можно составить и для линейных цепей с переменными параметрами. Очевидно, что в подобных цепях характер зависимости между входным и выходным сигналами в процессе передачи изменяется. Иными словами, передаточная функция цепи зависит не только от но и от времени; импульсная характеристика также зависит от двух переменных: от интервала между моментом приложения единичного импульса и моментом наблюдения выходного сигнала t (как и для цепи с постоянными параметрами) и, кроме того, от положения интервала на оси времени. Поэтому для цепи с переменными параметрами импульсную характеристику следует записывать в общей форме

Если на входе четырехполюсника с импульсной характеристикой действует произвольный сигнал s(t) (рис. 10.2), то, основываясь на принципе суперпозиции, выходной сигнал по аналогии с выражением (6.11) можно определить с помощью выражения

(10.12)

Постараемся теперь ввести передаточную функцию для цепи с переменными параметрами. Для этого представим функцию в виде интеграла Фурье:

(10.13)

где - спектральная плотность сигнала s(t).

Тогда выражение (10.13) переходит в следующее:

Рис. 10.2. Параметрический четырехполюсник

Обозначив внутренний интеграл через перепишем последнее выражение следующим образом:

(10.14)

Из (10.14) следует, что функцию определяемую выражением

Предположим, что на входе линейной стационарной системы присутствует колебание , представляющее собой некоторую реализацию случайного процесса. Если эта реализация указана заранее, то никакой новой задачи не возникает - к сигналуследует относится как к детерминированной функции. Зная математическую модель системы, например частотный коэффициент передачи, можно найти выходную реакцию.

Однако специфика состоит в том, что полные сведения о входном сигнале недоступны - мы располагаем лишь сведениями об усредненных вероятностных характеристиках случайного процесса .

Цель - исследовать связь между статистическими характеристиками процессов и, которая может быть найдена на основе математической модели системы.

Введем ограничение - будем рассматривать лишь стационарные входные случайные процессы . Математическое ожиданиемгновенных значений реализаций постоянно во времени (), в то время как функция корреляции зависит лишь от величины- абсолютного сдвига между точками на оси времени.

Рассмотрим отдельно взятую реализацию входного сигнала и представим ее в виде интеграла Фурье

где - спектральная плотность.

Выходной сигнал системы будет найден, если известен ее частотный коэффициент передачи

(1)

Предположение о стационарности процесса накладывает условие: среднее значение спектральной плотности.

Выполняя статистическое усреднение в обеих частях выражения (1), имеем

(2)

Для того, чтобы вычислить функцию корреляции , необходимо располагать значением выходного сигнала в момент времени.

(3)

Т.к. функция вещественна, поэтому формула (3) не измениться, если в ее правой части перейти к комплексно-сопряженным величинам

(4)

где ; - спектр мощности стационарного случайного процесса . (Используется фильтрующее свойство дельта-функции).

(6)

Спектр мощности выходного случайного сигнала связан с аналогичным спектром сигнала на входе соотношением

В прикладных задачах часто приходится иметь дело с односторонними спектрами и, которые определены только при положительных частотах,

поэтому дисперсия выходного сигнала

(9)

Часто приходится рассматривать воздействие на линейные частотно-избирательные цепи широкополосных случайных сигналов, образованных, например, хаотической последовательностью коротких импульсов. В этом случае если эффективная ширина спектра входного случайного процесса значительно превышает ширину полосы пропускания системы, то реальный случайный процесс можно заменить эквивалентным ему белым шумом с односторонним спектром мощности , где- некоторая точка в пределах полосы пропускания цепи.

Тогда формула (9) упростится

В инженерных расчетах линейную частотно-избирательную цепь, находящуюся под воздействием широкополосного случайного сигнала, удобно характеризовать шумовой полосой пропускания . Она определяется как полоса пропускания идеального полосового фильтра с вещественным коэффициентом передачи, равным максимуму модуля коэффициента передачи реальной цепи. При возбуждении идеальной и реальной систем белым шумом со спектром мощностидисперсии шумовых сигналов на выходах обеих цепей должны совпадать

(11)

Следовательно

(12)

Например, для интегрирующей RC-цепи

;

Следовательно

При этом .

Если входной случайный процесс нормален (гауссов характер законов распределения), то случайный процесс на выходе будет обладать этим свойством независимо от динамических свойств линейной системы.

На основании формулы Дюамеля мгновенное значение отклика

есть результат суммирования предшествующих значений входного сигнала , умноженных на сдвинутую импульсную характеристику цепи.

Для определения устойчивости годограф строить необязательно. Для этого достаточно проанализировать АЧХ и ФЧХ. Следовательно, третья альтернативная формулировка критерия Найквиста: если АЧХ больше единице на частотах, при которых ФЧХ равна 0 или где n z , то система с обратной связью не устойчива, в противном случае устойчива (Рисунок 3.10).



Рис. 3.9 АЧХ и ФЧХ разомкнутой системы с обратной связью

4 Прохождение случайных сигналов через линейные стационарные цепи

Основными характеристиками случайного процесса является плотность вероятности мгновенных значений сигнала, корреляционная функция и спектральная плотность мощности. Отыскание плотности вероятности мгновенных значений сигнала на выходе линейной цепи по известной плотности вероятности на входе цепи и известным характеристикам цепи представляет весьма сложную задачу. Однако, если входной сигнал является гауссовым, то выходной сигнал так же всегда будет гауссовым. Это означает, что решение задачи упрощается и сводится к нахождению параметров выходного сигнала (математического ожидания и дисперсии).

Задача нахождения корреляционной функции и спектральной плотности мощности выходного сигнала значительно проще.

Обратные преобразования Фурье от спектральной плотности мощности согласно теории Винера – Хинчина:

– корреляционная функция сигнала

Обратные преобразования Фурье от коэффициента передачи по мощности:

– корреляционная функция импульсной характеристики сигнала

Так как произведение спектров двух сигналов равно спектру свёртки этих сигналов, то можно записать:

То есть корреляционная функция сигнала на выходе линейной цепи равна свёртке корреляционной функции сигнала на входе цепи и корреляционной функции импульсной характеристики цепи.

При анализе различных систем в качестве помехи часто выступает белый шум, имеющий спектральную плотность мощности постоянную во всём диапазоне частот:

и корреляционная функция

Следовательно, корреляционная функция выходного сигнала равна автокорреляционной функции импульсной характеристики с коэффициентом .

5 Прохождение сигналов через нелинейные цепи

Линейные стационарные цепи не изменяют спектральный состав сигнала. Основные радиотехнические преобразования, связанные с изменением спектрального состава сигнала, осуществляется либо с помощью нелинейных цепей, либо линейных цепей с переменными параметрами.

Исследование нелинейных цепей представляет собой сложную задачу, состоящую в решении нелинейных дифференциальных уравнений. Анализ нелинейных цепей упрощается, если нелинейный элемент является безынерционным, т. е. реакция на изменение входного воздействия происходит мгновенно. Строго говоря, безынерционных элементов (БНЭ) нет, но в случае, когда время изменения входного сигнала значительно превышает время установления процесса в нелинейном элементе, элемент может считаться безынерционным. В радиотехнике в качестве нелинейных элементов чаще всего используют полупроводниковые приборы (диоды, транзисторы). Для описания таких приборов используют ВАХ, которые связывают между собой напряжения, приложенные к приборам и токи, протекающие через приборы.

В радиоэлектронике приходится иметь дело с различными сигналами и разными цепями, при прохождении сигналов по таким цепям возникают переходные процессы, в результате которых форма передаваемого сигнала может измениться. Большинство устройств содержит в себе совокупность линейных и нелинейных элементов, что усложняет строгий анализ прохождения сигналов. Однако имеется достаточно широкий круг задач, которые успешно можно решать линейными методами, даже если в цепи имеется нелинейный элемент. Это относится к устройствам, в которых сигналы настолько малы по амплитуде, что нелинейностью характеристик нелинейного элемента можно пренебречь, так что его также можно считать линейным.

Большинство методов анализа прохождения сигналов через линейную цепь основано на основополагающем принципе - принципе суперпозиции, при котором реакция цепи на сложное воздействие может быть определена как сумма реакций на более простые сигналы, на которые можно разложить сложное воздействие. Реакция линейной цепи на известное простое (тестовое) воздействие называется системной (т.е. зависящей только от цепи) передаточной характеристикой цепи. Сама передаточная характеристика может быть определена:

а) классическим методом, при котором цепь описывается системой линейных дифференциальных уравнений, в правой части которой записано тестовое воздействие; этим методом чаще всего определяются реакции на единичную ступенчатую функцию или дельта-функцию, так называемые переходная и импульсная характеристики цепи, являющиеся передаточными характеристиками цепи для метода наложения (или метода интеграла Дюамеля); классическим методом при достаточно несложных цепях и воздействиях может быть сразу решена задача анализа, т.е. нахождения реакции цепи на входной сигнал;

б) комплексным методом, если в качестве тестового сигнала используется гармоническое колебание; в этом случае определяется такая передаточная характеристика цепи как частотная характеристика, являющаяся основой частотного метода анализа;

в) операторным методом, при котором используется аппарат преобразования Лапласа, в результате чего определяется операторная передаточная характеристика цепи, так как операторный метод использует сигнал вида e pt , где p =s +jw , то при замене в операторной передаточной характеристике p на jw получается частотная передаточная характеристика, кроме того, как будет показано ниже, оригинал от операторной передаточной характеристики является импульсной характеристикой цепи.

Поэтому можно классифицировать методы анализа прохождения сложных сигналов на

а) частотные , применяющиеся главным образом для анализа установившихся процессов;

б) временные , использующие переходную или импульсную характеристику цепи, применяющиеся в случаях быстро меняющихся (импульсных) сигналов, когда важными являются переходные процессы в цепи.

При анализе прохождения сигналов через узкополосные избирательные цепи эти же методы можно использовать не для мгновенных значений сигнала, а для медленноменяющейся огибающей.

Лучшие статьи по теме