Гид компьютерного мира - Информационный портал
  • Главная
  • Программы
  • Как найти кабель под землей. Простейший детектор скрытой проводки на скорую руку Схема искателя обрыва кабеля

Как найти кабель под землей. Простейший детектор скрытой проводки на скорую руку Схема искателя обрыва кабеля

Если кабельная линия повреждена, то это чревато экономическими потерями при передачах электрического тока, может возникнуть короткое замыкание, что приведет к поломке запитанных приборов или подстанций. При нарушении целостности изоляционного материала может возникнуть опасность удара электрическим током.

Поиск повреждений кабельный линий

Повреждение линии может стать причиной отключения от электропитания жилых домов, хозяйственных объектов, системы управления и контроля цехов и предприятий, транспортных средств. Отыскивание нарушений в роботе кабельной линии имеет первоочередное значение.

Какие бывают повреждения

Подземные и надземные линии передачи электрического тока могут повреждаться по многим причинам. Самые распространены следующее ситуации:

  1. Замыкание одной или более жил на землю;
  2. Замыкание нескольких жил одновременно между собой;
  3. Нарушение целостности жил и заземление их как оборванных;
  4. Обрыв жил без заземления;
  5. Возникновение коротких замыканий даже при незначительном повышении напряжения (заплывающий пробой), которые пропадают при нормализации напряжения;
  6. Нарушение целостности изоляционного материала.

Для установления истинного типа нарушения передачи электроэнергии пользуются специальным прибором – мегаомметром.


Мегаомметр

Предполагаемый поврежденный кабель отсоединяют от источников питания и рабочего прибора. На обоих концах провода измеряют такие показатели:

  • Фазной изоляции;
  • Линейной изоляции
  • Отсутствие нарушений целостности жил, проводящих электрический ток.

Этапы определение мест повреждения кабельных линий

Отыскивание проблематичных зон в кабеле включает три основных этапа, благодаря которым достаточно быстро устраняется нерабочий участок:


Первый этап осуществляется с использованием специального оборудования. В этих целях используют трансформаторы, кенотрономы или же приборы способные генерировать высокие частоты. При прожигании за 20 — 30 сек показатель сопротивления значительно падает. Если в проводнике присутствует влага, то необходимая процедура прожигания проходит намного дольше и максимальное сопротивление, которого удается достигнуть составляет 2 -3 тыс Ом.


АИП-70 установка для прожигания кабеля

Намного дольше происходит этот процесс в муфтах, при этом показатели сопротивления могут изменятся волнообразно, то повышаются, то обратно падают. Процедуру прожигания проводят до тех пор, пока не наблюдается линейное понижение сопротивления.

Сложность определение места повреждения кабеля состоит в том, что длина кабельной линии может достигать несколько десятков километров. Поэтому на втором этапе нужно определить зону повреждения. Чтобы справиться с поставленной задачей используют эффективные методики:

  • Методика измерения ёмкости проводника;
  • Методика зондирующего импульса;
  • Создание петли между жилами;
  • Создание в проводнике колебательного разряда.

Выбор методики зависит от предполагаемого типа повреждений.

Емкостный метод

На основе емкости проводника вычисляют длину от свободного конца проводника до зоны разрыва жилы.


Схема определения повреждений емкостным методом

Применяя переменный и постоянный ток измеряют емкость жилы, что повреждена. Расстояние измеряют, основываясь на том, что емкость проводника напрямую зависит от его длины.

с1/lx = c2/l – lx,

где, c1 и c2 – емкость кабеля на обоих концах, l –длина исследуемого проводника, lх – искомое растения до места предполагаемого обрыва.

Из представленной формулы не трудно определить длину кабеля до зоны обрыва, которая равняется:

lх = l * c1/(c1 + c2).

Импульсный метод

Методика применима практически во всех случаях повреждения проводника, за исключением заплывающих пробоев, причиной которых является повышенная влажность. Поскольку в таких случаях сопротивление в проводнике свыше 150 Ом, что является недопустимым для импульсного метода. Он основывается на подаче, с помощью переменного тока, импульса-зонда к поврежденной области и улавливании ответного сигнала.


Временная развертка зондирующих отраженных сигналов при импульсном методе определения мест повреждения: 1, 2, …, m – единичные процессы, повторяющиеся с частотой 500 — 1000 Гц.

Эта процедура осуществляется с помощью специального оборудования. Поскольку скорость передачи импульса постоянная и составляет 160 метров за микросекунду, то легко рассчитать расстояние до зоны повреждения.

Проверка кабеля производится на приборе ИКЛ-5 или же ИКЛ-4.

Прибор ИКЛ-5

Экран сканера отображает импульсы разной формы. Исходя из формы можно примерно определить тип повреждения. Также импульсный метод дает возможность найти место где возникло нарушение в передаче электрического тока. Хорошо данный метод работает если оборвана одна или несколько жил, а плохой результат получается при коротком замыкании.

Метод петли

В этом методе применяется специальный мост из переменного тока, позволяющий измерять изменения сопротивления. Создание петли возможно при наличии хотя бы одной рабочей жили в кабеле. Если возникла ситуация с обрыванием всех жил, следует воспользоваться жилами кабеля, что располагается параллельно. При соединении перебитой жилы с рабочей по одну сторону проводника образуется петля. К противоположной стороне жил подсоединяют мост, который может регулировать сопротивление.


Схема определения повреждений кабеля методом петли

Поиск повреждения силового кабеля при помощи данной методики имеет ряд недостатков, а именно:

  • Продолжительное время подготовки и измерений;
  • Полученные измерения не совсем точны.
  • Необходимо наличие закороток.

В силу этих причин метод применяют крайне редко.

Метод колебательного РАЗРЯДА

Используют метод если причиной повреждения послужил заплывающий пробой. Метод подразумевает использование кенотронной установки, от которой по поврежденной жиле подается напряжение. Если в процессе работы возникает пробой в кабеле, там обязательно формируется разряд с устойчивой частотой колебаний.

Учитывая тот факт, что электромагнитная волна имеет постоянную скорость, то можно легко определить место повреждения на линии. Это можно сделать, сопоставив периодичность колебания и скорость.


Схема определения повреждений методом колебательного разряда

Установив область повреждения, в предполагаемую зону отправляют оператора, который найдет точку повреждения силового кабеля. Для этого используют уже совсем другие методы, такие как:

  • Акустическое улавливание искрового разряду;
  • Метод индукции;
  • Метод вращающейся рамки.

Акустический метод

Этот вариант отыскивания повреждения используется для подземных линий. При этом оператору нужно создать искровой разряд в мести нарушения работы кабеля в земле. Метод работает в случае если в точке повреждения есть возможность создать сопротивление более 40 Ом. Сила звуковой волны, которую может создать искровой разряд, зависит от глубины, на которой размещается кабель, а также от структуры грунта.


Схема определения повреждений акустическим методом

В качестве прибора способного генерировать необходимый импульс используют кенотрон, в схему которого необходимо дополнительное включить шаровой разрядник и высоковольтный конденсатор. В роли акустического приемника используется электромагнитный датчик или же датчик-пьезо. Дополнительно используют усилители звуковой волны.

Метод индукции

Это универсальный метод для поиска всех возможных типов нарушений в работе кабеля, кроме этого, позволяет определить поврежденную кабельную линию и глубину на которой она залегает под землей. Используют для обнаружения муфт, соединяющих кабель.

Схема определения повреждений кабеля методом индукции

Основой данного метода является возможность уловить изменений в электромагнитном поле, что возникают при движении тока по электрической линии. Для этого пропускают ток, что имеет частоту 850 — 1250 Гц. Сила тока при этом может находиться в пределах нескольких долей ампера до 25 А.

Зная каким образом происходят изменения исследуемого электромагнитного поля не составит труда отыскать место нарушения целостности кабеля. Для того чтобы достаточно точно определить место, можно воспользоваться выжиганием кабеля и переводом однофазного замыкание в двух- или трехфазное.

В этом случае нужно создать цепь «жила-жила». Преимуществом такой цепи является то, что ток направляется по противоположных направлениях (по одной жиле вперед, по второй – обратно). Таким образом концентрация поля значительно возрастает и отыскать место повреждения значительно легче.

Метод рамки


Схема определения повреждений кабеля методом рамки

Это хороший способ для отыскивания нерабочих зон на поверхности линии электропередач. Принцип действия очень схож с методом индукции. Подключается генератор к двум жилами или же к одной жиле и оболочке. Затем на кабель с повреждением накладывается рамка, что вращается вокруг оси.

К месту нарушения должны отчетливо проявляются два сигнала – минимум и максимум. За предполагаемой зоной сигнал не будет колебаться, не давая пиков (монотонный сигнал).

Третий глаз (Часть 3)

Приборы для поиска и диагностики подземных инженерных коммуникаций

Благодаря многонаправленным антеннам повышается чувствительность приборов и уменьшается вероятность ошибок. Оператору больше нет необходимости ходить зигзагами по исследуемой территории – стоит только нажать на кнопку питания и выбрать тип нужной трассы, и прибор сам найдет ее и отобразит на экране. Такой подход позволяет пользоваться локатором даже работникам с невысокой квалификацией и практически без специального обучения.

Акустические течеискатели (локаторы)

Достаточно широко применяется ряд методов нахождения подземных коммуникаций, основанных на акустической локации. Часто такие методы используются для поиска утечек воды и газа в трубопроводах из любых металлических и неметаллических материалов. Поэтому приборы для поиска утечек так и называются – течеискатели.

Акустический неактивный метод

Вытекая из трубы, жидкость или газ издает шум, который может уловить акустический течеискатель с функцией пассивного обнаружения, иначе говоря – неактивный акустический детектор. Акустические датчики-микрофоны, которые могут быть контактными, прикладываемыми непосредственно к грунту, или бесконтактными, улавливают звуковые волны, распространяющиеся по грунту. Когда оператор подходит к месту утечки, шум становится сильнее. Определив точку, где звук самый сильный, можно установить местонахождение утечки. Этот метод работает при залегании трубопровода на глубине примерно до 10 м.

Если имеется доступ к трубе через смотровые колодцы, можно прослушивать шум, прикрепив микрофон к трубе или рукоятке вентиля, так как звуковые волны лучше распространяются по материалу трубопровода. Этим способом можно выявить участок трубы между двумя колодцами, на котором есть протечка, а далее, по силе звука, к какому из колодцев она ближе. Точность метода невелика, зато им можно выявить утечку на намного большей глубине, чем при прослушивании с поверхности. Если у прибора имеется функция псевдокорреляции, он может по разности силы звука рассчитывать расстояние до места утечки и уточнять результат поиска.

В комплект прибора обычно входят наушники, мощный усилитель звука (усиление до 5000–12 000 раз), фильтр помех, пропускающий звуки только той частоты, которые заложены в его «память», а также электронный блок, который обрабатывает и записывает результаты и может составлять отчеты. Некоторые приборы совместимы с компьютером.

Считается, что использование течеискателей позволяет сократить расходы на устранение аварий на коммунальных трубопроводах до 40–45%.

Однако у акустических течеискателей есть ряд недостатков. Результаты исследований сильно зависят от наличия шумовых помех, поэтому лучше всего они работают в условиях тишины при исследовании трубопроводов неглубокого заложения – до 1,5 м. Впрочем, современные приборы оснащены микропроцессорами цифровой обработки сигнала и фильтрами, отсеивающими шумовые помехи. Необходимо точно знать маршрут прокладки исследуемого трубопровода, чтобы пройти точно над ним и прослушать шум от утечки в разных точках.

Акустический активный метод – по генератору ударов

В ситуации, когда необходимо отыскать неметаллическую трубу и поэтому нельзя использовать электромагнитный трассоискатель, а к какой-то части трубы имеется доступ, одной из альтернатив является звуковой активный метод. В этом случае применяют генератор звуковых импульсов (ударник), который устанавливается в доступном месте на трубе и методом ударного воздействия создает акустические волны в материале трубы, которые затем улавливаются с поверхности земли акустическим датчиком прибора (микрофоном). Таким образом можно определить местоположение трубопровода. Конечно, этот метод можно использовать и на металлических трубах. Дальность действия прибора зависит от разных факторов, таких как глубина заложения и материал трубы, а также вид грунта. Сила и частота ударов могут регулироваться.

Акустический электрический – по звуку электрического разряда

Если в месте повреждения кабеля можно создать искровой разряд с помощью генератора импульсов, то звук от этого разряда можно прослушивать с поверхности грунта микрофоном. Для возникновения устойчивого искрового разряда необходимо, чтобы величина переходного сопротивления в месте повреждения кабеля превышала 40 Ом. В состав генератора импульсов входят высоковольтный конденсатор и разрядник. Напряжение с заряженного конденсатора через разрядник мгновенно передается на кабель, возникшая электромагнитная волна вызывает пробой в месте повреждения кабеля, и раздается щелчок. Обычно генерируется по одному импульсу через несколько секунд.

Этот метод применяют для локации кабелей всех видов с глубиной залегания до 5 м. Применять этот метод для поиска повреждений у кабелей в металлическом рукаве, проложенных открыто, не рекомендуется, так как звук хорошо распространяется по металлической оболочке и точность локализации места будет невысокой.

Ультразвуковой метод

В основе данного метода лежит регистрация ультразвуковых волн, не слышных человеческому уху. При выходе находящихся под высоким давлением (или наоборот – подсосе при высоком разрежении) жидкости или газа из трубопровода через трещины в сварных швах, неплотности в запорной арматуре и уплотнениях возникает трение между молекулами вытекающего вещества и молекулами среды, в результате генерируются волны ультразвуковой частоты. Благодаря коротковолновой природе ультразвука оператор может точно определять местоположение утечки даже при сильном шумовом фоне, в наземных газопроводах и подземных трубопроводах. Также с помощью ультразвуковых приборов обнаруживают неисправности в электрооборудовании – дуговые и коронные разряды в трансформаторах и распределительных шкафах.

В состав ультразвукового течеискателя входят датчик-микрофон, усилитель, фильтр, преобразователь ультразвука в слышимый звук, который транслируется наушниками. Чем ближе микрофон к месту утечки, тем сильнее звук в наушниках. Чувствительность прибора регулируется. На ЖК-экране результаты сканирования отображаются в цифровом виде. В комплект может входить контактный щуп, с помощью которого также можно прослушивать колебания. Для активного выявления мест негерметичности в состав прибора включают генератор (передатчик) ультразвуковых колебаний, который можно поместить в исследуемый объект (например, емкость или трубопровод), излучаемый им ультразвук будет выходить наружу через неплотности и трещины.

Преимущества. Метод простой, для поиска утечек не требуется сложной процедуры, обучение работе с прибором занимает около 1 часа и при этом метод весьма точный: позволяет обнаруживать утечки через мельчайшие отверстия на расстоянии 10 м и более на фоне сильных посторонних шумов.

Корреляционный метод

В данном случае на трубу по обе стороны от места утечки (например, в двух колодцах или на запорной арматуре на поверхности земли) устанавливают два (или больше) датчиков виброакустических сигналов (пьезодатчиков). От датчиков сигнал передается в прибор по кабелям или по радиоканалу. Поскольку расстояние от датчиков до места утечки разное, звук от утечки будет приходить к ним в разное время. По разнице во времени поступления сигнала на датчики электронный блок-коррелятор рассчитывает функцию кросс-корреляции и место нахождения повреждения между датчиками.

Данный метод применяется на сложных для акустического сканирования зашумленных участках, таких как городские и заводские территории.

Точность расчета зависит от точности измерения времени прохождения сигналов прибором, точности измерения расстояния между датчиками и точности значения скорости распространения звука по трубе. Как утверждают специалисты, при правильном проведении данных измерений надежность, чувствительность и точность корреляционного метода значительно превышают результаты других акустических методов: отклонение не более 0,4 м и вероятность обнаружения утечек составляет 50–90%. Точность результата не зависит от глубины залегания трубопровода. Метод очень устойчив к помехам.

Недостаток корреляционного метода состоит в том, что результаты искажаются при наличии неоднородностей в трубах: засоров, изгибов, ответвлений, деформаций, резких изменений диаметра. Корреляционные течеискатели – дорогостоящие и сложные приборы, работать на которых могут только специально подготовленные специалисты.

Газоискатели

Для выявления утечек газов из трубопроводов используются газоискатели. Микронасос, который входит в состав прибора, закачивает пробу воздуха с проверяемого места. Отобранная проба сравнивается с эталонным воздухом (например, методом нагревания спиралью: при нагревании пробы с газом и воздуха температура спирали будет разная), и прибор фиксирует наличие в пробе газа. Также имеются газоискатели (сравнивающие пробу и эталонный воздух) на основе других принципов. Такое оборудование способно уловить газ или другое опасное летучее вещество даже в том случае, если его в воздухе содержится всего 0,002%!

Газоискатель – легкий и компактный, удобный и простой в эксплуатации прибор. Однако он весьма чувствителен к температуре окружающего воздуха: при слишком высокой или низкой температуре его работоспособность снижается и даже может стать нулевой, например при температуре ниже –15 и выше +45 °С.

Комплексные приборы

Как мы видим, у локаторов каждого типа имеются определенные ограничения и недостатки. Поэтому для служб, эксплуатирующих подземные коммуникации, современные трассопоисковые приборы часто выполняются комплексными, состоящими из аппаратуры разных типов, например, в них вместе с электромагнитным трассоискателем могут входить акустический локатор, георадар и пирометр, а акустический приемник может иметь еще и канал приема электромагнитных сигналов. Поиск может проводиться одновременно на частотах электромагнитных и радиоволн, либо прибор может переключаться в режимы приема магнитных, радио- или акустических волн. Причем модульная конструкция приборов позволяет комплектовать комплексы индивидуально для каждой компании-клиента в зависимости от его конкретных задач. Использование комплексных приборов повышает вероятность точного нахождения местоположения объекта, облегчает и ускоряет проведение работ по обслуживанию подземных коммуникаций.

Инновации в отрасли оборудования для поиска подземных коммуникаций

Запись координат объектов поиска в GPS/ ГЛОНАСС

У некоторых современных трассопоисковых приборов есть возможность определять координаты обнаруженного объекта по GPS/ ГЛОНАСС и записывать их (даже онлайн) в базу данных цифрового плана участка, созданного методом автоматизированного проектирования CAD, обозначив там выявленные инженерные коммуникации. Параллельно данные поступают на компьютер в головной офис компании. Информация может быть представлена в виде простых меток, которые помогут оператору экскаватора визуально ориентироваться на схеме, показанной на дисплее машины. Еще проще будет работать оператору, если управление экскаватором частично автоматизировано и связано с GPS/ ГЛОНАСС – автоматика поможет избежать повреждения коммуникаций.

Новинки трассопоискового оборудования

Ведущие разработчики данного оборудования предлагают сканеры, которые сканируют стройплощадку и на основе анализа характеристик местного грунта и прочих условий на строительном объекте автоматически указывают оптимальную величину частоты, на которой рекомендуется вести локацию подземных коммуникаций. Для достижения наилучшей чувствительности некоторые трассоискатели оснащаются функцией автоматического подбора оптимальной частоты сигнала – это удобно в условиях «грязного» эфира и когда под землей проходит сразу несколько трасс.

Появились приборы с двумя выходами, которые могут теперь подсоединяться и вести исследования одновременно двух инженерных коммуникаций.

Приборы оснащаются высококонтрастным жидкокристаллическим дисплеем, изображение на котором видно даже при освещении прямыми солнечными лучами, информативность дисплеев повышается: в режиме реального времени отображаются все необходимые параметры: глубина коммуникации, направление движения к ней, интенсивность сигнала и т. п. На экране прибора даже может формироваться наглядная схема расположения коммуникаций, трассоискатель способен одновременно «видеть» до трех подземных коммуникаций, «рисуя» на большом дисплее карту их расположения и пересечений.

Георадары (Подробнее о георадарах см. Часть 1)

Работа георадара основана на излучении электромагнитного импульса в грунт и регистрации отраженного сигнала от подземных объектов и границ среды с разными электрофизическими свойствами.

Области применения георадара огромны: он позволяет определять глубину залегания коммуникаций, местоположение пустот и трещин, зоны переувлажнения и уровень грунтовых вод, характер залегания геологических границ, зоны разуплотнения, незаконные врезки, дефекты земляного полотна, наличие арматуры, мин и снарядов, а также другие объекты.

Основное распространение георадиолокация получила в области поиска подземных коммуникаций, во многом благодаря тому, что этот метод обнаруживает коммуникации из любого материала, в том числе неметаллические.

Для поиска подземных коммуникаций подбирают георадар с антеннами, имеющими среднюю центральную частоту (200–700 МГц). Поиск на таких частотах обеспечивает глубину зондирования до 5 м, а также позволяет находить кабели и трубы малого диаметра.

При необходимости обследования больших территорий используются георадарные системы с массивом антенн, устанавливаемые на транспортное средство. Такие системы сканируют до нескольких гектаров в день.

Современные георадары могут находить подземные коммуникации в режиме реального времени и имеют возможность совместного использования с GPS-оборудованием, что позволяет привязываться к местности и, используя полученные координаты, переносить георадарные данные в CAD-системы, а также наносить обнаруженные коммуникации на имеющиеся схемы.

Долгое время считалось, что георадар – это сложная в понимании и управлении техника, однако с появлением современных технологий и продвинутого программного обеспечения ситуация в корне изменилась. Георадары лидирующих производителей имеют максимальную автоматизацию получения и интерпретации данных, что исключает ошибки, связанные с человеческим фактором. Таким образом, на сегодняшний день георадар является незаменимым помощником в поиске подземных коммуникаций и по праву может считаться «третьим глазом» инженера-изыскателя.

Прибор предназначен для поиска электросетей переменного тока под землёй и в каналах бетонных и кирпичных зданий, их местоположение и глубину залегания.

В отключенные кабельные линии перед поиском трассы следует подать напряжение звуковой частоты достаточной мощности, а конец линии временно замкнуть, также следует поступить при возможном механическом повреждении, электромагнитное поле в поврежденном месте всегда в несколько раз выше, чем в исправном участке линии.

Принцип действия прибора основан на преобразовании электромагнитного поля электросети частотой 50 Гц в электрический сигнал, уровень которого зависит от напряжения и тока в проводнике, а также от расстояния до источника излучения и экранирующих факторов грунта или бетона.

Схема прибора состоит из датчика электромагнитного поля BF1, предварительного усилителя на транзисторе VT1, усилителя мощности DA1 и выходного контрольного устройства состоящего из звукового анализатора на наушниках ВA1 , светового пикового индикатора HL1 и гальванического прибора индикации мощности - PA1. Для снижения искажений сигнала электромагнитного поля в схемы усилителей введены цепи отрицательной обратной связи. Использование на выходе мощного усилителя низкой частоты позволяет подключать нагрузку любого сопротивления и мощности.

В схему введены установочные резисторы и регуляторы, позволяющие оптимизировать режим работы схемы устройства. Прибором можно оценить глубину залегания электросети от поверхности земли.

Для электропитания схемы прибора достаточно источника тока типа «Крона» на 9 вольт или КБС на напряжение 2 * 4,5 вольта.

Для устранения случайной разрядки элементов питания в схеме используется двойное выключение: размыканием плюсовой шины питания шины питания при отключении наушников BA1.

Электромагнитный датчик BF1 используется от высокоомных телефонных наушников типа ТОН -1 со снятой металлической мембраной. Он подключен к предварительному усилителю на транзисторе VT1 через разделительный конденсатор C2. Конденсатор С3 снижает уровень высокочастотных помех, особенно радио- помехи. Усилитель на транзисторе VT1 имеет обратную связь по напряжению с коллектора на базу через резистор R1, при повышении напряжения на коллекторе повышается напряжение на базе, транзистор открывается и напряжение коллектора снижается. Питание на усилитель подается через резистор R2 нагрузки с фильтра C1, R4. Резистор R3 в цепи эммитера транзистора VT1 смешает характеристику транзистора и за счёт отрицательного уровня напряжения несколько снижает усиление при пиках сигнала. Предварительно усиленный сигнал электромагнитного поля через конденсатор С4 гальванической развязки поступает на регулятор усиления R5 и далее через резистор R6 и конденсатор С6 на вход (1) аналоговой микросхемы усилителя мощности DA1. Конденсатор С5 снижают частоты более 8000 Гц для лучшего восприятия сигнала.

Усилитель мощности звуковой частоты на микросхеме DA1 с внутренним устройством защиты от коротких замыканий в нагрузке и перегрузки позволяет с хорошими параметрами усилить входной сигнал до величины достаточной для работы нагрузки мощностью до 1 ватта.

Искажения в сигнале вносимые усилителем в процессе работы зависят от значения отрицательной обратной связи. Цепь ОС состоит из резисторов R7,R8 и конденсатора C7. Резистором R7 возможно подстроить коэффициент обратной связи исходя из качественных показателей сигнала.
Конденсатор С9 и резистор R8 устраняют самовозбуждение микросхемы на низких частотах.

Через разделительный конденсатор С10 усиленный сигнал поступает на нагрузку ВА1 , индикатор уровня РА1 и светодиодный индикатор HL1.
Электродинамические наушники подключаются к выходу усилителя через разъём XS1 и XS2 , перемычка в XS1 замыкает цепь подачи напряжения питания с батареи GB1 на схему. Световой индикатор HL1 контролирует наличие перегрузки выходного сигнала.

Гальванический прибор РА1 указывает на уровень сигнала в зависимости от глубины залегания электросети и подключен к выходу усилителя через разделительный конденсатор С11 и умножитель напряжения на диодах VD1-VD2.

В приборе поиска электросетей нет дефицитных радиодеталей: приемник электромагнитного поля BF1 можно выполнить из малогабаритного согласующего трансформатора или электромагнитной катушки.
Резисторы типа С1-4 или МЛТ 0,12 , конденсаторы типа КМ, К53.
Транзистор обратной проводимости КТ 315 или КТ312Б. Диоды импульсные на ток до 300 мА.
Иностранный аналог микросхемы DA1 - TDA2003.
Прибор уровня РА1 использован от индикатора уровня записи магнитофонов на ток до 100мкА.
Светодиод HL1 любого типа. Наушники ВА1 - ТОН-2 или малогабаритные от плееров.

Правильно собранное устройство начинает работать сразу, положив датчик электромагнитного поля на сетевой шнур включенного паяльника установить резистором R7 максимальную громкость сигнала в наушниках, при
среднем положении регулятора R5 «Усиление».

Все радиодетали схемы расположены на печатной плате кроме датчика BF1 , он установлен в отдельной металлической коробочке. Батарея питания - КБС закреплена снаружи корпуса на скобку. Все корпуса с радиокомпонентами закреплены на алюминиевой тросточке.

Испытание прибора поиска электросетей можно начать не выходя из дома, достаточно включить свет одной из ламп и уточнить трассу в стене и потолке от выключателя до лампы, а затем перейти на поиск трасс под землёй во дворе дома.

Литература:
1. И.Семёнов Измерение больших токов. «Радиомир» №7 /2006 год стр.32
2. Ю.А.Мячин 180 аналоговых микросхем. 1993г.
3. В.В.Мукосеев и И.Н. Сидоров Маркировка и обозначение радиоэлементов. Справочник. 2001г.
4. В.Коновалов. Прибор поиска электропроводов - Радио,2007,№5 ,С41.
5. В.Коновалов. А. Вантеев Поиск подземных электросетей, Радиомир №11, 2010, С16.

Часто перед проведением каких-нибудь земляных работ или даже с целью обслуживания проложенного под землей кабеля, необходимо этот самый кабель найти. Согласитесь, будет весьма досадным - повредить проложенный под землей кабель, например зацепив его ковшом экскаватора или случайно пробурив.

Чтобы подобных казусов избежать, необходимо предварительно получить достоверную информацию о месте пролегания кабеля под землей, это же касается и подземных коммуникационных трубопроводов.

Если информация о месте проложенного под землей кабеля не будет достоверной или окажется недостаточно точной, то неминуемы лишние затраты и ошибки, а ошибки такие иногда чреваты плачевными последствиями для здоровья и даже для жизни людей.

Состояние подземных кабелей позволяют оценить трассоискатели, но иногда требуется локализовать кабель под землей, чтобы дальше провести его внимательный осмотр и принять решение о целесообразности тех или иных дальнейших действий. Именно о способах локализации кабелей под землей и пойдет речь в данной статье.

Как вы уже поняли, поиск подземного кабеля — дело ответственное, и требует большой внимательности и аккуратности. Давайте же рассмотрим способы поиска кабеля под землей.

Найдите документацию

В принципе любой объект, на территории которого имеются подземные кабели, имеет соответствующую документацию. Чертежи и схемы вы можете запросить в администрации города или у коммунальной службы, в ведомстве которой находится данный объект.

На этих чертежах должна быть представлена вся информация о подземных коммуникациях на территории объекта: подземные кабели, трубы, каналы и т. д. Эта документация станет для вас источником исходных данных, от которых можно будет оттолкнуться, чтобы знать где искать. Данные могут оказаться неточными, и тогда следующие шаги оператора позволят уточнить место положения кабеля под землей.

Прозондировать грунт на наличие закопанного кабеля, как один из вариантов, поможет георадар.

Георадары — это радиолокаторы, с помощью которых можно исследовать стены зданий, воду, землю, но не воздух. Данные геофизические приборы являются электронными устройствами, функционирование которых можно описать следующим образом.

Передающая антенна излучает радиочастотные импульсы в исследуемую среду, затем отраженный сигнал поступает на приемную антенну и обрабатывается. Процессы синхронизированы так, что система позволяет например на экране ноутбука увидеть место, где проходит подземный кабель.

Использование георадара, работающего на принципе излучения и приема электромагнитных волн, позволяет точно выявить глубину залегания и размер подземного объекта. С помощью георадара легко найти пластиковые трубы и оптоволоконные кабели под землей. Но отличить пластиковую трубу с водой от уплотнения в грунте сможет лишь профессионал. Тем не менее, приблизительно выявить расположение подземных коммуникаций в разного рода грунтах можно. Документация поможет оператору сориентироваться и понять, что он обнаружил — трубу с водой или трубу с кабелем.

Отрицательными факторами при работе с георадаром будут: высокий уровень грунтовых вод, глинистый грунт, наносы, - в силу их высокой проводимости, и, как следствие, возможности прибора будут ниже. Разнородные осадочные породы и скальный грунт способствуют рассеиванию сигнала.

Для правильной интерпретации полученной информации важно обладать достаточным опытом в данной сфере, и лучше всего, если оператором будет квалифицированный профессионал. Сам прибор довольно дорогой, и качество его использования, как вы уже догадались, сильно зависит от условий исследуемой среды.


В некоторых случаях температура проложенного под землей силового кабеля может сильно отличаться от температуры окружающего кабель грунта. И иногда разности температур может оказаться достаточно для точной локализации кабеля. Но опять же, внешние условия сильно влияют, и например ветер или солнечный свет значительно скажутся на результате анализа.

Наиболее верный способ поиска кабеля под землей — использовать метод электромагнитной локации. Это наиболее популярный и поистине универсальный способ поиска любых проводящих коммуникаций под землей, в том числе и кабелей. По количеству получаемой информации, данный метод, пожалуй, лучший.

Обнаруживается граница зоны залегания кабеля. Идентифицируется проводящий материал подземного объекта. Измеряется глубина залегания кабеля путем оценки электромагнитного поля от центра подземного кабеля. Может работать с любым типом грунта с одинаковой эффективностью. Трассоискатель имеет небольшой вес и не требует при обращении с собой специальных навыков от оператора.

Электромагнитный трассоискатель кабельных линий использует в процессе своей работы всем известный принцип электромагнитной индукции: любой металлический проводник с током образует вокруг себя электромагнитное поле. В случае силового кабеля - это ток рабочего напряжения линии, для стального трубопровода - вихревой ток наводки. Именно эти токи и улавливаются прибором.

Андрей Повный

Значимость точной информации.

Информация о местоположении и фактическом состоянии подземных трубопроводов и кабельных линий является самым важным результатом обследования этих коммуникаций.


Достоверность и точность результатов обследования являются единственными характеристиками, которые могут представлять реальную ценность. Неточная или искаженная информация может стать причиной ошибок в интерпретации полученных данных и явиться поводом для ненужных затрат. Еще хуже, если в результате неполных или неточных данных обследования подвергаются опасности жизнь и здоровье людей.


Окончательное заключение о состоянии объекта или его отдельного элемента может быть сделано на основании его визуального обследования, однако, это представляется невозможным для подземных кабелей и труб. Опыт, знание обследуемой рабочей зоны, использование чертежей или схем, а также эффективное использование трассоискателей могут обеспечить получение такой информации, которая позволит дать практически точное заключение о состоянии элементов объекта. В некоторых случаях, могут быть участки, на которых невозможно точно установить состояние коммуникаций. Эти зоны всегда должны быть локализованы для обеспечения возможности проведения дальнейшего обследования.


Локация подземных трубопроводов и кабелей является очень ответственным видом деятельности: все операции должны проводиться методично, аккуратно и с большим вниманием. В данном цикле статей я постараюсь дать структурированную и, по возможности, полную информация о методах использования трассоискателей для получения точных и достоверных данных.


Методы локации подземных кабелей и труб

В настоящее время наибольшее распространение получили следующие методы обнаружения и трассировки подземных кабелей и трубопроводов:

1 Доступная документация

Схемы и чертежи, имеющиеся в коммунальных службах или городской администрации, содержат огромное количество информации о наличии и положении подземных труб и кабелей. При проведении обследования местности в первую очередь важно получить любую доступную информацию и имеющуюся документацию. Информация может быть (и, как правило, является) неточной или неполной, однако эта информация будет являться той самой отправной точкой для оператора при выполнении обследования местности. Кроме того, намного проще подтвердить или дополнить имеющуюся информацию, чем начинать обследование местности «вслепую». До начала проведения работ на объекте очень полезной может оказаться любая информация, даже если она только позволяет приблизительно узнать, чего можно ожидать на объекте.


2 Георадары

Георадар — радиолокатор, который в отличие от классического, используется для зондирования исследуемой среды, а не воздушного пространства. Исследуемой средой может быть земля (отсюда наиболее распространенное название — георадар), вода, стены зданий и т. п.


Современный георадар представляет собой сложный геофизический прибор, создаваемый при соблюдении определенных технологий. Основной блок состоит из электронных компонентов, выполняющих следующие функции: формирование импульсов, излучаемых передающей антенной, обработка сигналов, поступающих с приемной антенны, синхронизация работы всей системы. Таким образом, георадар состоит из трех основных частей: антенной части, блока регистрации и блока управления. Антенная часть включает передающую и приемную антенны. Под блоком регистрации понимается ноутбук или другое записывающее устройство, а роль блока управления выполняет система кабелей и оптико-электрических преобразователей (по материалам Wikipedia).


Георадар

Методы поиска подземных коммуникаций, основанные на использовании электромагнитных волн, были разработаны для точного обнаружения, определения габаритов и расстояния (глубины залегания) до подземных объектов. Локация подземных коммуникаций, в частности пластиковых трубопроводов или волоконно-оптических кабелей связи стала разумным и естественным развитием этого метода. Очевидно, что с помощью радара достаточно трудно (в большинстве случаев, практически невозможно) отличить пластиковые трубы с водой от плотного грунта (например, влажная глина и земля). Однако георадары позволяют получить приблизительную картину расположения подземных кабелей и труб в различных типах грунтов. При этом, даже в благоприятных условиях применения радаров необходимо иметь соответствующее представление о том, что находиться или должно находиться под землей.


Высокая проводимость мелкозернистых осадочных пород – глин и наносов – резко снижают возможности прибора, а скальные и разнородные осадочные породы рассеивают его сигнал. Высокий уровень грунтовых вод также может отрицательно повлиять на результаты обследования. Также стоит отметить, что информация, получаемая по результатам работы георадара, очень сложна и требует интерпретации специалистом высокой квалификации и с большим опытом. Сложность, высокая стоимость и зависимость от условий применения приводят к нецелесообразности использования этого метода для ежедневной работы. Однако, вполне вероятно, что в самом ближайшем будущем этот метод станет полезным при составлении схем подземных коммунальных коммуникаций.


3 Акустическая локация

Акустические методы получили наибольшее распространение при поиске утечек воды в подземных трубопроводах. Однако, разновидность этого метода получила достаточно широкое распространение для трассировки подземных водопроводов, в особенности пластиковых трубопроводов. Сейчас применение этого метода ограничено обнаружением и локацией водопроводов, тем не менее дальнейшее развитие подобных методов может расширить сферу их применения, в частности, для использования при трассировке подземных пластиковых газовых труб.


4 Инфракрасная термография

Температура подземных кабелей и труб может быть отличной от температуры окружающего грунта. Определение этой разности температур может быть достаточно эффективным методом локации подземных труб и кабелей. Однако, эффективность этого метода сильно зависит от окружающих условий и значительно снижается в результате воздействия таких факторов, как солнечный свет или ветер. На практике эти методы имеют узкоспециальное применение - поиск пустот в канализационных коллекторах, а также - локация разрывов, трещин и мест повреждений изоляционного покрытия на отдельных участках теплотрасс.


5 Лозоискательство

Это самый старый способ поиска воды и подземных трубопроводов. Для поиска лозоискателями используется ветка дерева или лоза, а также ее многочисленные варианты в виде сварочных электродов и т.п. Этот интересный способ требует специфических навыков и интуиции. Я лично неоднократно наблюдал работу таких «умельцев» и могу сказать, что результаты их работы меня впечатлили. Однажды специалист одного из Водоканалов прошел по трассе силового кабеля с двумя электродами, показав направление кабеля и муфты. Длина трассы была порядка 130 метров, кабель часто менял свое направление, параллельное обследование с помощью электромагнитного трассоискателя полностью подтвердило результаты, полученные с помощью электродов. Конечно, трудно ожидать широкого использования этого метода, а к достоинствам следует отнести низкую стоимость и небольшой вес оборудования;-)


6 Электромагнитная локация

Это универсальный и самый распространенный метод локации и трассировки подземных коммуникаций. Достоинством этого метода является возможность получения "из под земли" большого объема информации, которая не может быть получена при использовании любой другой технологии. Этот метод имеет следующие отличительные черты:

Поиск с поверхности земли границ зон залегания подземных кабелей и труб;
- Трассировка и идентификация определенных линий;
- Трассировка и идентификация канализационных коллекторов или других неметаллических каналов и труб, к которым есть доступ; локализация закупорки и повреждений (с использованием миниатюрного проталкиваемого передатчика-«зонда»;
- Измерение глубины залегания (расстояния от поверхности грунта до центра электромагнитного поля вокруг коммуникации) непосредственно с поверхности земли;
- Портативность и небольшой вес оборудования (легко удерживается в руках) и возможность эффективного использования даже неопытными операторами;
- Возможность использования трассоискателей с любыми типами грунта и даже под водой;

Лучшие статьи по теме