Гид компьютерного мира - Информационный портал
  • Главная
  • Вконтакте
  • Способы обнаружения скрытой проводки — используем специальные и самодельные приборы. Индикатор скрытой проводки собственного изготовления Прибор для поиска кабеля под землей своими руками

Способы обнаружения скрытой проводки — используем специальные и самодельные приборы. Индикатор скрытой проводки собственного изготовления Прибор для поиска кабеля под землей своими руками

Чтобы поиск проводов, спрятанных под слоем штукатурки, не стал настоящей проблемой при ремонте квартиры, достаточно иметь в своем арсенале домашнего мастера индикатор скрытой проводки.

Поиск проводки

Существует множество разнообразных вариантов этих приборов заводского изготовления (например, популярный детектор «Дятел»), но можно собрать его и собственными руками. Для этого рассмотрим варианты конструкторских решений подобной задачи.

Виды конструкций искателя скрытой проводки

В зависимости от принципов работы, такие детекторы принято разделять по физическим характеристикам электропроводки:

  • электростатические – осуществляющие свою функции по определению электрического поля, образуемого напряжением при подключении электричества. Это самая простая конструкция, которую легче всего изготовить своими руками;
  • электромагнитные – работающие за счет обнаружения электромагнитного поля, создаваемого электрическим током в проводах;
  • индуктивные детекторы металла – работающие подобно металлоискателю. Обнаружение металла проводников обесточенной проводки происходит за счет появления изменений в электромагнитном поле, создаваемом самим детектором;
  • комбинированные приборы заводского изготовления, имеющие повышенную точность и чувствительность, но более дорогие по сравнению с остальными. Используются профессиональными строителями для работы в больших масштабах, где необходима высокая точность и производительность.

Также существуют искатели, которые входят в конструкцию многофункциональных устройств (например, детектор скрытой проводки входит в схему конструкции многофункционального устройства обслуживания электросетей «Дятел»).


Сигнализатор скрытой проводки Е121 Дятел

Такие устройства как «Дятел», позволяют соединить в одном приборе сразу несколько полезных девайсов.

Использование индикатора напряжения в качестве детектора скрытой проводки

Наиболее простым способом найти скрытую электропроводку, будет применение усовершенствованного индикатора напряжения, имеющего автономное питание, усилитель и звуковое оповещение (так называемая звуковая отвертка).


Индикатор напряжения с усилителем

В данном случае не нужно ничего мастерить своими руками и не требуется никаких модификаций в самом инструменте, а лишь только использовать его возможности с другой целью. Касаясь рукой жала отвертки, проводя ей по стене, можно обнаружить скрытую электропроводку, находящуюся под напряжением.


Использование индикатора для поиска проводки

Электрическая схема в данном случае будет реагировать на электромагнитные наводки, исходящие от проводки.

Сооружение детектора скрытой проводки своими руками по схеме с полевым транзистором

Наиболее простым по конструкции и легким в изготовлении индикатором скрытой проводки, является детектор, работающий по принципу регистрации электрического поля.

Именно его рекомендуется сделать своими руками, если отсутствуют продвинутые навыки в электротехнике.
Для изготовления простейшего детектора срытой проводки, схема которого основана на использовании полевого транзистора, понадобятся такие детали и инструменты:

  • паяльник, канифоль, припой;
  • канцелярский нож, пинцет, кусачки;
  • собственно сам полевой транзистор (любой из КП303 или КП103);
  • динамик (можно от стационарного телефона) с сопротивлением от 1600 до 2200 Ом;
  • элемент питания (батарейка от 1,5 до 9 В);
  • выключатель;
  • небольшая пластиковая емкость для монтажа в ней деталей;
  • провода.

Монтаж самодельного искателя

При работе с полевым транзистором, уязвимым к электростатическому пробою, необходимо заземлить паяльник и пинцет, и не касаться выводов пальцами.

Принцип действия прибора простой – электрическое поле изменяет толщину n-p перехода исток-сток, вследствие чего изменяется его проводимость.

Поскольку электрическое поле изменяется с частотой сети, то в динамике будет слышен характерный гул, (50Гц), усиливающийся по мере приближения к электропроводке. Здесь важно не перепутать выводы транзистора, поэтому нужно свериться с маркировкой выводов.


Маркировка выводов КП103

Поскольку управляющим выводом, реагирующим на изменения электрического поля, в данной конструкции является затвор, то полевой транзистор лучше выбрать в металлическом корпусе, который соединен с затвором.


Полевой транзистор в металлическом корпусе

Таким образом, корпус транзистора будет служить приемной антенной сигнала электропроводки. Сборка данного искателя напоминает составление простейшей электрической цепи в школе, поэтому не должен вызвать трудностей даже у начинающего мастера.


Наглядный опыт с полевым транзистором

Для визуализации процесса обнаружения электропроводки, параллельно цепи исток-сток можно подключить миллиамперметр или стрелочный индикатор от старого магнитофона с балластным резистором, номиналом 1-10 кОм (подобрать опытным путем).


Индикатор от магнитофона

При закрывании транзистора (приближении к проводке) показания индикатора будут увеличиваться, указывая на присутствие электрического поля и напряжения в скрытой электропроводке. Ввиду простоты конструкции монтаж навесной, на одножильных проводах, обладающих необходимой упругостью.

Поиск электромагнитного излучения проводки

Ещё одним вариантом самодельного детектора скрытой проводки является применение миллиамперметра, подключённого к высокоомной катушке индуктивности.


Самодельные искатели проводки

Катушка может быть самодельной, выполненной в виде дуги, или можно применить первичную обмотку от трансформатора, удалив часть магнитопровода.


Трансформатор в качестве приемной антенны

Данный детектор не требует питания – благодаря индуктивности, приемная катушка будет действовать как обмотка трансформатора тока, в которой будет индуцироваться переменный ток, на который будет реагировать миллиамперметр.

Многие мастера применяют головку от старого магнитофона или плеера в качестве приемной антенны. В этом случае, если сохранился в работающем состоянии усилительный тракт, то его используют целиком, вынимая головку, подключая ее экранированным кабелем для удобства поиска.


Аудиоплеер с головкой на конце кабеля

Как и в первом случае, в динамике будет слышно гудение 50Гц, а его интенсивность будет зависеть не только от расстояния, но и силы тока, протекающего в проводах.

Усовершенствованные самодельные детекторы проводки

Большую чувствительность, избирательность и дальность обнаружения дают детекторы скрытой электропроводки, изготовленные с несколькими усилительными каскадами на базе биполярных транзисторов или операционных усилителей с элементами логических микросхем.


Схема и внешний вид искателя на операционном усилителе

Для самостоятельного изготовления прибора по данным схемам необходим хотя бы минимальный опыт в радиоделе с пониманием принципов взаимодействий применяемых радиодеталей. Не вдаваясь в принципы работы, можно выделить два существенно различающихся направления:

  • усиление сигнала с последующим его отображением в виде отклонения стрелки индикатора или увеличения интенсивности звучания. Здесь усовершенствуются схемы на базе полевого транзистора или приемной антенны в виде катушки индуктивности с добавлением усилительных каскадов;

Простая схема детектора проводки с усилителем на биполярных транзисторах
  • использование интенсивности издаваемого электропроводкой электромагнитного поля для изменения частоты визуальных сигналов и тона звучания звукового оповещения. Тут приемный элемент (полевой транзистор или антенна) включается в схему управления частотой генератора импульсов (одновибратора, мультивибратора) на базе биполярных транзисторов, логической или операционной микросхемы.
Схема сигнализатора проводки на базе полевого транзистора и мультивибратора

Данные детекторы, хотя и наиболее просты в изготовлении, имеют существенные недостатки. Это небольшой диапазон обнаружения, а также необходимость наличия напряжения в скрытой электропроводке.

Поиск металла электропроводки

Чтобы обнаружить проводку в железобетонных конструкциях или под значительной толщиной, без возможности подачи на провода напряжения, необходимо использовать более сложные и точные конструкции детекторов, работающих подобно металлоискателям.


Работа с профессиональным прибором

Самостоятельное изготовление таких приборов экономически неоправданно, а также требует достаточно глубоких познаний в радиотехнике, наличия элементной базы и измерительного оборудования. Но опытный мастер, для пробы своих сил и собственного удовольствия может использовать имеющиеся в сети схемы металлоискателей, и своими руками изготовить подобные устройства.


Схема металлоискателя с описанием его работы

Для менее опытных мастеров, в случае необходимости обнаружения скрытой проводки без наличия напряжения, будет проще и выгодней приобрести один из таких инструментов как BOSCH, SKIL «Дятел», Mastech и другие.


Универсальный детектор проводки BOSCH
Универсальный детектор Mastech

Искатель проводки на Android

У владельцев планшетных компьютеров и некоторых смартфонов на базе Android, есть возможность использовать свои девайсы в качестве детекторов скрытой проводки.


Смартфон в роли детектора проводки

Для этого необходимо скачать соответствующее программное обеспечение в GooglePlay. Принцип действия состоит в том, что в данных мобильных устройствах имеется модуль, выполняющий функции компаса для осуществления навигации.

При использовании соответственных программ, данный модуль используется в качестве металлоискателя.


Программа Metal Sniffer, добавляющая устройствам Android функцию металлоискателя

Чувствительности данного металлодетектора на хватит для поиска кладов под землёй, но для обнаружения металла проводов на расстоянии в несколько сантиметров под слоем штукатурки его должно хватить.

Но следует помнить, что без применения специализированных приборов, или использования профессионального металлоискателя, способного различать металлы, обнаружить скрытую в железобетонных панелях электропроводку с помощью импровизированного детектора на базе Android будет невозможно.

  • " onclick="window.open(this.href," win2 return false > Печать

Существуют способы обнаружения скрытой проводки «на­родными» методами, без специальных приборов. Например, можно включить на конце этой проводки большую нагрузку и искать по отклонению компаса или с помощью катушки провода с сопротивле­нием около 500 Ом с разомкнутым магнитопроводом подключенной на микрофонный вход любого усилителя (музыкальный центр, магни­тофон и др.), сделав максимальную громкость. В последнем случае по звуку наводки 50 Гц провод в стене будет обнаружен.

Прибор № 1. Он может использоваться для обнаружения скрытой электропроводки, отыскания обрыва провода в жгуте или кабеле, выявления перегоревшей лампы в электрогирлянде. Это простейшее устройство, состоящее из полевого транзистора, головного телефона и элементов питания. Принципиальная схема прибора представлена на рис. 1. Схему раз­работал В. Огнев из г. Перми.

Рис. 1. Принципиальная схема простого искателя

Принцип действия устройства основан на свойстве канала полевого транзистора изменять свое сопротивление под действием наводок на вывод затвора. Транзистор VT1 - КП103, КПЗОЗ с любым буквенным индексом (у последнего вывод корпуса соединяют с выводом затвора). Телефон BF1 - высокоомный, сопротивлением 1600-2200 Ом. Полярность подключения батареи питания GB1 роли не играет.

При поиске скрытой проводки корпусом транзистора водят по стене и по максимальной громкости звука частотой 50 Гц (если это электропроводка) или радиопередачи (радиотрансляционная сеть) определяют место прокладки проводов.

Место обрыва провода в неэкранированном кабеле (например, сете­вом шнуре какого-либо электро- или радиоприбора), перегоревшую лампу электрогирлянды отыскивают так. Все провода, в том числе и оборванный, заземляют, другой конец оборванного провода соеди­няют через резистор сопротивлением 1-2 МОм с фазным проводом электросети и, начиная с резистора, перемещают транзистор вдоль жгута (гирлянды) до пропадания звука - это и есть место обрыва провода или неисправная лампа.

Индикатором может служить не только головной телефон, но и омметр (изображен штриховыми линиями) или авометр, включенный в этот режим работы. Источник питания GB1 и телефон BF1 в этом случае не нужен.

Прибор № 2. Теперь рассмотрим прибор, выполненный на трех тран­зисторах (см. рис. 2). На двух бипо­лярных транзисторах (VT1, VT3) собран мультивибратор, а на поле­вом (VT2) - электронный ключ.


Рис. 2. Принципиальная схема трехтранзисторного искателя

Принцип действия этого иска­теля, разработанного А. Борисовым, основан на том, что вокруг электри­ческого провода образуется электри­ческое поле - его и улавливает искатель. Если нажата кнопка выключателя SB1, но электрического поля в зоне антенного щупа WA1 нет, либо искатель находится далеко от сетевых проводов, транзистор VT2 открыт, мультивибратор не рабо­тает, светодиод HL1 погашен.

Достаточно приблизить антенный щуп, соединенный с цепью затвора полевого транзистора, к проводнику с током либо просто к сетевому проводу, транзистор VT2 закроется, шунтирование базо­вой цепи транзистора VT3 прекратится и мультивибратор начнет работать.

Начнет вспыхивать светодиод. Перемещая антенный щуп вблизи стены, нетрудно проследить за пролеганием в ней сетевых проводов.

Полевой транзистор может быть любой другой из указанной на схеме серии, а биполярные - любые из серии КТ312, КТ315. Все рези­сторы - МЛТ-0,125, оксидные конденсаторы - К50-16 или другие малогабаритные, светодиод - любой из серии АЛ307, источник пита­ния - батарея «Корунд» либо аккумуляторная батарея напряжением 6-9 В, кнопочный выключательSB1 - КМ-1 либо аналогичный.

Корпусом искателя может стать пластмассовый пенал для хранения школьных счетных палочек. В его верхнем отсеке крепят плату, в ниж­нем - располагают батарею.

Можно регулировать частоту колебаний мультивибратора, а зна­чит, частоту вспышек светодиода, подбором резисторов R3, R5, либо конденсаторов CI, С2. Для этого нужно временно отключить от рези­сторов R3 и R4 вывод истока полевого транзистора и замкнуть кон­такты выключателя.

Прибор № 3. Искатель может быть собран и с использованием генератора на биполярных транзисторах разной структуры (рис. 3). Полевой транзистор (VT2) по прежнему управляет работой генератора при попадании антенного щупа WA1 в элек­трическое поле сетевого про­вода. Антенна нужно изгото­вить из проволоки длинной 80-100 мм.


Рис. 3. Принципиальная схема искателя с генератором на

Транзисторах различной структуры

Прибор № 4. А этот прибор для обнаружения повреждений скры­той электропроводки питается от автономного источника напряже­нием 9 В. Принципиальная схема искателя представлена на рис. 4.


Рис. 4. Принципиальная схема искателя на пяти транзисторах

Принцип работы следующий: на один из проводов скрытой элек­тропроводки подается переменное напряжение 12 В от понижающего трансформатора. Остальные провода заземляют. Искатель включа­ется и перемещается параллельно поверхности стены на расстоянии 5-40 мм. В местах обрыва или окончания провода светодиод гаснет. Искатель может быть также использован для обнаружения поврежде­ний жил в гибких переносных и шланговых кабелях.

Прибор № 5. Детектор скрытой проводки, представленный на рис. 5, выполнен уже на микросхеме К561ЛА7. Схему представляет Г. Жидовкин.


Рис.5. Принципиальная схема искателя скрытой проводки на микросхеме К561ЛА7

Примечание.

Резистор R1 нужен для ее защиты от повышенного напряжения ста­тического электричества, но, как показала практика, его можно и не ставить.

Антенной является кусок обычного медного провода любой толщины. Главное, чтобы он не прогибался под собственным весом, т. е. был доста­точно жестким. Длина антенны определяет чувствительность устройства. Наиболее оптимальной является величина 5-15 см.

Таким устройством очень удобно определять и местопо­ложение перегоревшей лампы в елочной гирлянде - возле нее треск прекращается. А при приближении антенны к электропроводке детек­тор издает характерный треск.

Прибор № 6. На рис. 6 изображен более сложный искатель, имеющий, кроме звуковой, еще и световую индикацию. Сопротивление резистора R1 должно быть не менее 50 МОм.


Рис. 6. Принципиальная схема искателя со звуковой и световой индикацией

Прибор № 7. Искатель, схема которого приведена на рис. 7, состоит из двух узлов:

♦ усилителя напряжения переменного тока, основой которого слу­жит микромощный операционный усилитель DA1;

♦ генератора колебаний звуковой частоты, собранного на инвер­тирующем триггере Шмитта DD1.1 микросхемы К561ТЛ1, частотозадающей цепи R7C2 и пьезоизлучателе BF1.


Рис. 7. Принципиальная схема искателя на микросхеме К561ТЛ1

Принцип действия искателя следующий. При расположении антенны WA1 вблизи от токонесущего провода электросети наводка ЭДС частоты 50 Гц усиливается микросхемой DA1, в результате чего зажигается светодиод HL1. Это же выходное напряжение операцион­ного усилителя, пульсирующее с частотой 50 Гц, запускает генератор звуковой частоты.

Ток, потребляемый микросхемами прибора при питании их от источника напряжением 9 В, не превышает 2 мА, а при включении светодиода HL1 составляет 6-7 мА.

Когда искомая электропроводка расположена высоко, наблюдать за свечением индикатора HL1 затруднительно и вполне достаточно зву­ковой сигнализации. В таком случае светодиод может быть отключен, что повысит экономичность прибора. Все постоянные резисторы - МЛТ-0,125, подстроенный резистор R2 - типа СПЗ-Э8Б, конденсатор CI - К50-6.

Примечание.

Для более плавной регулировки чувствительности, сопротивление резистора R2 следует уменьшить до 22 кОм, а его нижний по схеме вывод соединить с общим проводом через резистор сопротивле­нием 200 кОм.

Антенной WA1 служит площадка фольги на плате размером при­мерно 55x12 мм. Начальную чувствительность прибора устанавли­вают подстроечным резистором R2. Безошибочно смонтированный прибор, разработанный С. Стаховым (г. Казань), в налаживании не нуждается.

Прибор № 8. Этот универсальный прибор-индикатор сочетает в себе два индикатора, позволяя не только определить скрытую про­водку, но и обнаружить любой металлический предмет, находящийся в стене или полу (арматура, старые провода и т. п.). Схема искателя представлена на рис. 8.


Рис. 8. Принципиальная схема универсального искателя

Индикатор скрытой проводки собран на базе микромощного опе­рационного усилителяDA2. При расположении вблизи электропро­водки провода, подключенного на вход усилителя, наводка частоты 50 Гц воспринимается антенной WA2, усиливается чувствительным усилителем, собранным на DA2, и переключает с этой частотой све­тодиод HL2.

Прибор состоит из двух независимых устройств:

♦ металлоискателя;

♦ индикатора скрытой электропроводки.

Рассмотрим работу прибора по принципиальной схеме. На тран­зисторе VT1 собран ВЧ генератор, который вводится в режим воз­буждения регулировкой напряжения на базе VT1 с помощью потен­циометра R6. ВЧ напряжение выпрямляется диодом VD1 и переводит компаратор, собранный на ОУ DA1, в положение, при котором гаснет светодиод HL1 и генератор периодических звуковых сигналов, собран­ный на микросхеме DA1 находится в выключенном состоянии.

Вращением регулятора чувствительности R6 устанавливается режим работы VT1 на пороге генерации, который контролируется выключением светодиода HL1 и генератора периодического сигнала. При попадании в поле индуктивности L1/L2 металлического пред­мета генерация срывается, компаратор переключается в положение, при котором загорается светодиод HL1. На пьезокерамический излу­чатель подается периодическое напряжение частотой около 1000 Гц с периодом около 0,2 с.

Резистор R2 предназначен для установки режима порога генерации при среднем положении потенциометра R6.

Совет.

Приемные антенны WA 7 и WA2 должны быть максимально удалены от руки и находиться в головной части прибора. Часть корпуса, в которой находятся антенны, не должна иметь внутреннего покры­тия фольгой.

Прибор № 9. Малогабаритный металлоискатель. Малогабаритный металлоискатель может обнаруживать скрытые в стенах гвозди, шурупы, металлическую арматуру на расстоянии нескольких санти­метров.

Принцип действия. В металлоискателе использован традиционный метод обнаружения, основанный на работе двух генераторов, частота одного из которых изменяется при приближении прибора к метал­лическому предмету. Отличительная особенность конструкции - отсутствие самодельных намоточных деталей. В качестве катушки индуктивности использована обмотка электромагнитного реле.

Принципиальная схема прибора показана на рис. 9, а.


Рис. 9. Малогабаритный металлоискатель: а - принципиальная схема;

б - печатная плата

Металлоискатель содержит:

♦ LC-генератор на элементе DDL 1;

♦ RC-генератор на элементах DD2.1 и DD2.2;

♦ буферный каскад на DD 1.2;

♦ смеситель на DDI.3;

♦ компаратор напряжения на DD1.4, DD2.3;

♦ выходной каскад на DD2.4.

Работает устройство так. Частоту RC-генератора нужно устанавли­вать близкой к частотеLC-генератора. При этом на выходе смесителя будут присутствовать сигналы не только с частотами обоих генерато­ров, но и с разностной частотой.

Фильтр низкой частоты R3C3 выделяет сигналы разностной частоты, которые поступают на вход компаратора. На его выходе фор­мируются прямоугольные импульсы такой же частоты.

С выхода элемента DD2.4 они поступают через конденсатор С5 на разъем XS1, в гнездо которого вставляют вилку головных телефонов сопротивлением около 100 Ом.

Конденсатор и телефоны образуют дифференцирующую цепочку, поэтому в телефонах будут раздаваться щелчки с появлением каж­дого фронта и спада импульсов, т. е. с удвоенной частотой сигнала. По изменению частоты щелчков можно судить о появлении вблизи прибора металлических предметов.

Элементная база. Вместо указанных на схеме допустимо использо­вать микросхемы: К561ЛА7; К564ЛА7; К564ЛЕ5.

Полярный конденсатор - серий К52, К53, остальные - К10-17, КЛС. Переменный резисторR1 - СП4, СПО, постоянные - МЛТ, С2-33. Разъем - с контактами, замыкающимися при вставленной в гнездо вилке телефонов.

Источник питания - батарея «Крона», «Корунд», «Ника» или ана­логичный им аккумулятор.

Подготовка катушки. Катушку L1 можно взять, например, из электромагнитного реле РЭС9, паспорт РС4.524.200 или РС4.524.201 с обмоткой сопротивлением около 500 Ом. Для этого реле нужно разо­брать и удалить подвижные элементы с контактами.

Примечание.

Магнитная система реле содержит две катушки, намотанные на отдельных магнитопроводах и включенные последовательно.

Общие выводы катушек нужно соединить с конденсатором С1, а магнитопровод также, как и корпус переменного резистора, - с общим проводом металлоискателя.

Печатная плата. Детали устройства, кроме разъема, следует раз­местить на печатной плате (рис. 9, 6) из двустороннего фольгированного стеклотекстолита. Одна из ее сторон должна быть оставлена металлизированной и соединена с общим проводом другой стороны.

На металлизированной стороне нужно закрепить батарею питания и «добытую» из реле катушку.

Выводы катушки реле следует пропустить через раззенкованные отверстия и соединить с соответствующими печатными проводниками. Остальные детали размещаются со стороны печати.

Плату устанавите в корпус из пластмассы или жесткого картона, на одной из стенок которого закрепите разъем.

Наладка металлоискателя. Налаживание устройства следует начи­нать с установки частоты LC-генератора в пределах 60-90 кГц под­бором конденсатора С1.

Затем нужно переместить движок переменного резистора примерно в среднее положение и подбором конденсатора С2 добиться появления в телефонах звукового сигнала. При перемещении движка резистора в ту или иную сторону частота сигнала должна изменяться.

Примечание.

Для обнаружения металлических предметов переменным рези­стором предварительно нужно установить возможно меньшую частоту звукового сигнала.

С приближением к предмету частота начнет изменяться. В зави­симости от настройки, выше или ниже нулевых биений (равенства частот генераторов), или вида металла, частота изменится в большую или меньшую сторону.

Прибор № 10. Индикатор металлических предметов.

При проведении строительных и ремонтных работ нелишней будет информация о наличии и месторасположении различных металлических предметов (гвоздей, труб, арматуры) в стене, полу и т. д. Поможет в этом устройство, описание которого приводится в этом разделе.

Параметры по обнаружению:

♦ большие металлические предметы - 10 см;

♦ труба диаметром 15 мм - 8 см;

♦ винт М5 х 25 - 4 см;

♦ гайка М5 - 3 см;

♦ винт М2,5 х 10 -1,5 см.

Принцип работы металлоискателя основан на свойстве металли­ческих предметов вносить затухание в частотозадающий LC-контур автогенератора. Режим автогенератора устанавливают вблизи точки срыва генерации, и приближение к его контуру металлических пред­метов (в первую очередь ферромагнитных) заметно снижает ампли­туду колебаний или приводит к срыву генерации.

Если индицировать наличие или отсутствие генерации, то можно определять место расположение этих предметов.

Принципиальная схема устройства приведена на рис. 10, а. Оно имеет звуковую и световую индикацию обнаруженного предмета. На транзисторе VT1 собран ВЧ автогенератор с индуктивной связью. Частотозадающий контур L1C1 определяет частоту генерации (около 100 кГц), а катушка связи L2 обеспечивает необходимые условия для самовозбуждения. РезисторамиR1 (ГРУБО) и R2 (ПЛАВНО) можно устанавливать режимы работы генератора.


Рис.10. Индикатор металлических предметов:

А - принципиальная схема; б - конструкция катушки индуктивности;

В - печатная плата и размещение элементов

На транзисторе VT2 собран истоковый повторитель, на диодах VD1, VD2 - выпрямитель, на транзисторах VT3, VT5 - усилитель тока, а на транзисторе VT4 и пьзоизлучателе BF1 - звуковой сигна­лизатор.

При отсутствии генерации ток, протекающий через резистор R4, открывает транзисторыVT3 и VT5, поэтому светодиод HL1 будет светить, а пьезоизлучатель издавать тональный сигнал на резонанс­ной частоте пьезоизлучателя (2-3 кГц).

Если ВЧ автогенератор будет работать, то его сигнал с выхода истокового повторителя выпрямляется, и минусовое напряжение с выхода выпрямителя закроет транзисторы VT3, VT5. Светодиод погаснет, звучание сигнали затора прекратится.

При приближении контура к металлическому предмету амплитуда колебаний в нем будет уменьшаться, либо генерация сорвется. В этом случае минусовое напряжение на выходе детектора будет снижаться и через транзисторы VT3, VT5 начнет протекать ток.

Светодиод зажжется, раздастся звуковой сигнал, что укажет на наличие вблизи контура металлического предмета.

Примечание.

Со звуковым сигнализатором чувствительность устройства выше, поскольку он начинает работать при токе в доли миллиам­пера, в то время как для светодиода необходим значительно боль­ший ток.

Элементная база и рекомендуемые замены. Вместо указанных на схеме, в устройстве можно применить транзисторы КПЗОЗА (VT1), КПЗОЗВ, КПЗОЗГ, КПЗОЗЕ (VT2), КТ315Б, КТ315Д, КТ312Б, КТ312В (VT3 - VT5) с коэффициентом передачи тока не менее 50.

Светодиод - любой с рабочим током до 20 мА, диоды VD1, VD2 - любые из серий КД503, КД522.

Конденсаторы - серий КЛС, К10-17, переменный резистор - СП4, СПО, подстроечные - СПЗ-19, постоянные - МЛТ, С2-33, Р1-4.

Устройство питается от батареи с общим напряжением 9 В. Потребляемый ток составляет 3-4 мА, когда светодиод не горит, и возрастает примерно до 20 мА, когда он зажигается.

Ее ли прибором пользоваться не часто, то выключатель SA1 можно не устанавливать, подавая напряжение на устройство подсоединением батареи питания.

Конструкция катушек индуктивности. Конструкция катуш­ки индуктивности автогенератора показана на рис. 10, б - она аналогична магнитной антенне радиоприемника. На круглый стер­жень 1 из феррита диаметром 8-10 мм и проницаемостью 400-600 надевают бумажные гильзы 2 (2-3 слоя плотной бумаги), на них нама­тывают виток к витку проводом ПЭВ-20,31 катушки L1 (60 витков) и L2 (20 витков) - 3.

Примечание.

Намотку при этом надо проводить в одном на правлении и пра­вильно подсоединить выводы катушек к автогенератору

Кроме того, катушка L2 должна перемещаться по стержню с неболь­шим трением. Обмотку на бумажной гильзе можно закрепить скот­чем.

Печатная плата. Большинство деталей размещается на печатной плате (рис. 10, в) из двустороннего фольгированного стеклотексто­лита. Вторая сторона оставлена металлизированной и используется в качестве общего провода.

Пьезоизлучатель размещен на обратной стороне платы, но его надо изолировать от металлизации с помощью изоленты или скотча.

Плату и батарею следует разместить в пластмассовом корпусе, причем катушку нужно устанавливать как можно ближе к боковой стенке.

Совет.

Для повышения чувствительности устройства плату и бата­рею надо разместить на расстоянии нескольких сантиметров от катушки.

Максимальная чувствительность будет с той стороны стержня, на которой намотана катушка L1. Мелкие металлические предметы удоб­нее обнаруживать с торца катушки, это позволит более точно опреде­лять их месторасположение.

♦ шаг 1 - подобрать резистор R4 (для этого временно отпаять один из выводов диодаVD2 и устанавить резистор R4 такого максимально возможного сопротивления, чтобы на коллекторе транзистора VT5 было напряжение 0,8-1 В, при этом светодиод должен светить, а звуковой сигнал звучать.

♦ шаг 2 - устанавить движок резистора R3 в нижнее по схеме по­ложение и припаять диод VD2, а катушку L2 отпаять, после этого транзисторы VT3, VT5 должны закрыться (светодиод погаснет);

♦ шаг 3 - аккуратно перемещая движок резистора R3 вверх по схеме, добиться открывания транзисторов VT3, VT5 и включе­ния сигнализации;

♦ шаг 4 - устанавить движки резисторов Rl, R2 в среднее поло­жение и припаять катушкуL2.

Примечание.

При приближении L2 вплотную к L1 должна возникнуть генерация, а сигнализация выключиться.

♦ шаг 5 - катушку L2 удалить от L1 и добиться момента срыва генерации, а резисторомR1 ее восстановить.

Совет.

При настройте надо стремиться, чтобы катушка L2 была удалена на максимальное расстояние, а резистором R2 можно было бы доби­ваться срыва и восстановления генерации.

♦ шаг 6 - устанавить генератор на грани срыва и проверить чув­ствительность устройства.

На этом настройка металлоискателя считается завершенной.

Часто перед проведением каких-нибудь земляных работ или даже с целью обслуживания проложенного под землей кабеля, необходимо этот самый кабель найти. Согласитесь, будет весьма досадным - повредить проложенный под землей кабель, например зацепив его ковшом экскаватора или случайно пробурив.

Чтобы подобных казусов избежать, необходимо предварительно получить достоверную информацию о месте пролегания кабеля под землей, это же касается и подземных коммуникационных трубопроводов.

Если информация о месте проложенного под землей кабеля не будет достоверной или окажется недостаточно точной, то неминуемы лишние затраты и ошибки, а ошибки такие иногда чреваты плачевными последствиями для здоровья и даже для жизни людей.

Состояние подземных кабелей позволяют оценить трассоискатели, но иногда требуется локализовать кабель под землей, чтобы дальше провести его внимательный осмотр и принять решение о целесообразности тех или иных дальнейших действий. Именно о способах локализации кабелей под землей и пойдет речь в данной статье.

Как вы уже поняли, поиск подземного кабеля — дело ответственное, и требует большой внимательности и аккуратности. Давайте же рассмотрим способы поиска кабеля под землей.

Найдите документацию

В принципе любой объект, на территории которого имеются подземные кабели, имеет соответствующую документацию. Чертежи и схемы вы можете запросить в администрации города или у коммунальной службы, в ведомстве которой находится данный объект.

На этих чертежах должна быть представлена вся информация о подземных коммуникациях на территории объекта: подземные кабели, трубы, каналы и т. д. Эта документация станет для вас источником исходных данных, от которых можно будет оттолкнуться, чтобы знать где искать. Данные могут оказаться неточными, и тогда следующие шаги оператора позволят уточнить место положения кабеля под землей.

Прозондировать грунт на наличие закопанного кабеля, как один из вариантов, поможет георадар.

Георадары — это радиолокаторы, с помощью которых можно исследовать стены зданий, воду, землю, но не воздух. Данные геофизические приборы являются электронными устройствами, функционирование которых можно описать следующим образом.

Передающая антенна излучает радиочастотные импульсы в исследуемую среду, затем отраженный сигнал поступает на приемную антенну и обрабатывается. Процессы синхронизированы так, что система позволяет например на экране ноутбука увидеть место, где проходит подземный кабель.

Использование георадара, работающего на принципе излучения и приема электромагнитных волн, позволяет точно выявить глубину залегания и размер подземного объекта. С помощью георадара легко найти пластиковые трубы и оптоволоконные кабели под землей. Но отличить пластиковую трубу с водой от уплотнения в грунте сможет лишь профессионал. Тем не менее, приблизительно выявить расположение подземных коммуникаций в разного рода грунтах можно. Документация поможет оператору сориентироваться и понять, что он обнаружил — трубу с водой или трубу с кабелем.

Отрицательными факторами при работе с георадаром будут: высокий уровень грунтовых вод, глинистый грунт, наносы, - в силу их высокой проводимости, и, как следствие, возможности прибора будут ниже. Разнородные осадочные породы и скальный грунт способствуют рассеиванию сигнала.

Для правильной интерпретации полученной информации важно обладать достаточным опытом в данной сфере, и лучше всего, если оператором будет квалифицированный профессионал. Сам прибор довольно дорогой, и качество его использования, как вы уже догадались, сильно зависит от условий исследуемой среды.


В некоторых случаях температура проложенного под землей силового кабеля может сильно отличаться от температуры окружающего кабель грунта. И иногда разности температур может оказаться достаточно для точной локализации кабеля. Но опять же, внешние условия сильно влияют, и например ветер или солнечный свет значительно скажутся на результате анализа.

Наиболее верный способ поиска кабеля под землей — использовать метод электромагнитной локации. Это наиболее популярный и поистине универсальный способ поиска любых проводящих коммуникаций под землей, в том числе и кабелей. По количеству получаемой информации, данный метод, пожалуй, лучший.

Обнаруживается граница зоны залегания кабеля. Идентифицируется проводящий материал подземного объекта. Измеряется глубина залегания кабеля путем оценки электромагнитного поля от центра подземного кабеля. Может работать с любым типом грунта с одинаковой эффективностью. Трассоискатель имеет небольшой вес и не требует при обращении с собой специальных навыков от оператора.

Электромагнитный трассоискатель кабельных линий использует в процессе своей работы всем известный принцип электромагнитной индукции: любой металлический проводник с током образует вокруг себя электромагнитное поле. В случае силового кабеля - это ток рабочего напряжения линии, для стального трубопровода - вихревой ток наводки. Именно эти токи и улавливаются прибором.

Андрей Повный

Акустический метод практически универсален и во многих кабельных сетях является основным методом. Им можно определять повреждения различного характера: однофазные и междуфазные замыкания с различными переходными сопротивлениями, обрывы одной, двух или всех жил. В отдельных случаях возможно определение нескольких повреждений на одной кабельной линии. Метод применяется для определения мест повреждения в силовых кабельных линиях, носящих характер «заплывающего» пробоя, а так же может быть применен при замыканиях с переходным сопротивлением, обеспечивающим устойчивые искровые разряды, и при обрыве жил кабеля.

Сущность метода заключается в создании в месте повреждения мощных электрических разрядов и фиксации на поверхности земли звуковых колебаний с помощью чувствительных приемных устройств. Для создания мощных разрядов в месте повреждения электрическая энергия предварительно накапливается в высоковольтных конденсаторах или в емкости самого кабеля путем заряда от выпрямительной установки.

Запасенная энергия пропорциональна емкости {С} и квадрату напряжения {U}.

При достижении напряжения пробоя эта энергия расходуется за очень короткое время (десятки микросекунд) и в месте повреждения происходит мощный удар. Звук от этого удара распространяется в окружающей среде и может быть прослушан на поверхности земли. Обычно периодичность разрядов составляет 2-3 секунды.

В зависимости от характера повреждения кабеля собирают соответствующую схему измерения.

Рисунок. Схема определения места повреждения при замыкании между жилой и заземленной оболочкой (землей): 1 – жилы кабеля; 2 – оболочка кабеля; 3 – место повреждения.

Напряжение пробоя искрового промежутка не должно превышать 70% испытательного напряжения для кабеля данного типа. Практически для силовых кабелей с рабочим напряжением до 1, 6, 10 и 35 кВ напряжение импульсов не должно превышать 8, 25, 30 и 40 кВ соответственно.

Рисунок. Схема определения места повреждения при замыкании между жилой и заземленной оболочкой (землей) при использовании в качестве зарядной емкости жил кабеля: 1 – жилы кабеля; 2 – оболочка кабеля; 3 – место повреждения.

При повреждениях с заплывающим пробоем и обрывах жил напряжение на кабель подается непосредственно от выпрямительной установки, при этом напряжение пробоя в месте повреждения может быть доведено до испытательного.

Рисунок. Схема определения места повреждения при заплывающем пробое: 1 – жилы кабеля; 2 – оболочка кабеля; 3 – место повреждения.

Рисунок. Схема определения места повреждения при обрыве жил кабеля: 1 – жилы кабеля; 2 – оболочка кабеля; 3 – место повреждения.

Практически возникновение устойчивого искрового разряда в месте повреждения обеспечивается при значении переходного сопротивления 40 Ом и более. При меньших значениях переходного сопротивления и металлических замыканиях на оболочку акустический метод не может быть применен. В этих случаях проводящий мостик в месте повреждения разрушают пропусканием больших разрядных токов.

В настоящее время для создания в месте повреждения кабеля искровых разрядов применяют генераторы акустических ударных волн. Генератор имеет конденсаторы, которые заряжаются и затем разряжаются в дефектный кабель через рабочий искровой промежуток.

Рисунок. Генератор акустических ударных волн

Место повреждения кабеля определяется по максимальной слышимости звука разрядов. Обычно зона слышимости на поверхности земли колеблется от 2 до 15 метров в зависимости от свойств грунта. Наибольшую зону слышимости обеспечивают плотные и однородные грунты, наименьшую зону – рыхлые грунты, шлак, строительный мусор.

В случае, если зона повреждения располагается на расстоянии 10-50 м от оживленной автострады, то поиск повреждения рекомендуется проводить в ночное время, т. к. шум машин не позволит выделить акустический сигнал.

Ниже на видео демонстрируются акустические разряды в кабелях.

Применение акустического метода наиболее целесообразно для кабелей проложенных в земле и под водой. При прокладке хотя бы части кабельной трассы в кабельных каналах и коллекторах не рекомендуется использовать акустический метод из-за опасности возникновения пожара. Последнее обусловлено тем, что протекающие в момент разряда большие импульсные токи вызывают в местах соприкосновения с заземленными конструкциями и с другими кабелями искрение, что может привести к загоранию краски, покрытия кабеля и т.д.

Дополнительный материал:

  1. Приемник для поиска повреждений в силовых кабелей ПОИСК 2006м. Руководство по эксплуатации.
  2. Приемник для поиска повреждений в силовых кабелей П-806. Руководство по эксплуатации.
  3. Генератор акустических ударных волн ГАУВ-6-05-1. Паспорт.

Лучшие статьи по теме