Гид компьютерного мира - Информационный портал
  • Главная
  • Инструкции
  • Простая схема защиты от короткого замыкания. Схема защиты от перегрузки и короткого замыкания

Простая схема защиты от короткого замыкания. Схема защиты от перегрузки и короткого замыкания

Схема подключения транзистора к блоку питания приведена на рис.1, а вольт-амперные характеристики транзистора для различных сопротивлений резистора R1 - на рис.2. Работает защита так. Если сопротивление резистора равно нулю (т. е. исток соединен с затвором), а нагрузка потребляет ток около 0,25 А, то падение напряжения на полевом транзисторе не превышает 1,5 В, и практически на нагрузке будет все выпрямленное напряжение. При появлении же в цепи нагрузки КЗ ток через выпрямитель резко возрастает и при отсутствии транзистора может достичь нескольких ампер. Транзистор ограничивает ток короткого замыкания на уровне 0,45...0,5 А независимо от падения напряжения на нем. В этом случае выходное напряжение станет равным нулю, а все напряжение упадет на полевом транзисторе. Таким образом, в случае КЗ мощность, потребляемая от источника питания, увеличится в данном примере не более чем вдвое, что в большинстве случаев вполне допустимо и не отразится на "здоровье" деталей блока питания.

Рис. 2

Уменьшить ток короткого замыкания можно увеличением сопротивления резистора R1. Нужно выбирать такой резистор, чтобы ток короткого замыкания был примерно вдвое больше максимального тока нагрузки.
Подобный способ защиты особенно удобен для блоков питания со сглаживающим RC-фильтром - тогда полевой транзистор включают вместо резистора фильтра (такой пример показан на рис. 3).
Поскольку во время КЗ на полевом транзисторе падает почти все выпрямленное напряжение, его можно использовать для световой или звуковой сигнализации. Вот, к примеру, схема включения световой сигнализации - рис.7. Когда с нагрузкой все в порядке, горит светодиод HL2 зеленого цвета. При этом падения напряжения на транзисторе недостаточно для зажигания светодиода HL1. Но стоит появиться КЗ в нагрузке, как светодиод HL2 гаснет, но зато вспыхивает HL1 красного свечения.

Рис. 3

Резистор R2 выбирают в зависимости от нужного ограничения тока КЗ по высказанным выше рекомендациям.
Схема подключения звукового сигнализатора приведена на рис. 4. Его можно подключать либо между стоком и истоком транзистора, либо между стоком и затвором, как светодиод HL1.
При появлении на сигнализаторе достаточного напряжения вступает в действие генератор ЗЧ, выполненный на однопереходном транзисторе VT2, и в головном телефоне BF1 раздается звук.
Однопереходный транзистор может быть КТ117А- КТ117Г, телефон - низкоомный (можно заменить динамической головкой небольшой мощности).

Рис. 4

Остается добавить, что для слаботочных нагрузок в блок питания можно ввести ограничитель тока КЗ на полевом транзисторе КП302В. При выборе транзистора для других блоков следует учитывать его допустимую мощность и напряжение сток - исток.
Конечно, подобную автоматику можно ввести и в стабилизированный блок питания, не имеющий защиты от КЗ в нагрузке.

Начиниющие радиолюбители, которых большинство, для сборки регулированного блока питания выбирают схемы попроще. Такую схемку решил сделать и я, так как возможностей достать дорогие детали и настроить сложный БП вряд-ли получится.

Самое основное для любой конструкции корпус. Тут мне повезло досать нерабочий БП ATX от компьютера, куда и будет помещён будущий блок питания.


Разъёмы сзади для сети 220В оставил, а на место кулера прикрутил обычную розетку, так как их постоянно не хватает для массы моих электронных устройств. Короче лишней она не будет.


Печатная плата блока питания простейшая и изготовить её будет легко даже начинающим. В крайнем случае можно вырезать дорожки резаком, а не травить. Для защиты по максимальному току - а это обязательно должно быть в радиолюбительском блоке питания, выбрал схему электронного предохранителя с индикацией перегрузки на светодиоде.


Передняя панель блока питания изготавливается из пластика, текстолита или даже фанеры - кто на что богат. На ней будут крепиться стрелочные индикаторы - вольтметр и амперметр (как впоследствии стало понятно, что это намного лучше и удобней цифровой индикации), регулятор напряжения и кнопки включения и переключения режимов защиты. Я выбрал 0,1 и 1А, но можно расчитать резистор токовой защиты на любое значение.


Ещё на передней панели блока питания будут две клеммы для подключения проводов выхода БП.


Получается вот что-то уже похожее на блок питания. Трансформатор выбираем такой, чтоб он поместился в корпус. Так что если вы идёте его покупать на радиобазаре - сначала замеряйте габариты коробки.


Корпус обклеиваем самоклеющейся плёнкой или красим лаком.


Зелёный светодиод будет светиться при включении БП в сеть, а красный сигнализирует о срабатывании защиты от токовой перегрузки.


Здесь написано как рассчитать шунт для стрелочных индикаторов. А чтоб нанести на шкалу новые значения вольт и ампер, придётся раскрыть их корпуса и аккуратно наклеить бумажки с новыми значениями поверх старых.


Вот и всё. Отличный простой блок питания из подручных материалов полностью готов. Работа с ним в течении нескольких месяцев показала его высокую надёжность и простоту эксплуатации. Материал предоставил in_sane.

Обсудить статью ПРОСТОЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

Данная схема представляет собой простейший блок питания на транзисторах, оборудованный защитой от короткого замыкания (КЗ). Его схема представлена на рисунке.

Основные параметры:

  • Выходное напряжение - 0..12В;
  • Максимальный выходной ток - 400 мА.

Схема работает следующим образом. Входное напряжение сети 220В преобразуется трансформатором в 16-17В, затем выпрямляется диодами VD1-VD4. Фильтрация пульсаций выпрямленного напряжения осуществляется конденсатором С1. Далее выпрямленное напряжение поступает на стабилитрон VD6, который стабилизирует напряжение на своих выводах до 12В. Остаток напряжения гасится на резисторе R2. Далее осуществляется регулировка напряжения переменным резистором R3 до требуемого уровня в пределах 0-12В. Затем следует усилитель тока на транзисторах VT2 и VT3, который усиливает ток до уровня 400 мА. Нагрузкой усилителя тока служит резистор R5. Конденсатор С2 дополнительно фильтрует пульсации выходного напряжения.

Защита работает так. При отсутствии КЗ на выходе напряжение на выводах VT1 близко к нулю и транзистор закрыт. Цепь R1-VD5 обеспечивает смещение на его базе на уровне 0,4-0,7 В (падение напряжения на открытом p-n переходе диода). Этого смещения достаточно для открытия транзистора при определённом уровне напряжения коллектор-эмиттер. Как только на выходе происходит короткое замыкание, напряжение коллектор-эмиттер становится отличным от нулевого и равным напряжению на выходе блока. Транзистор VT1 открывается, и сопротивление его коллекторного перехода становится близким к нулю, а, значит, и на стабилитроне. Таким образом, на усилитель тока поступает нулевое входное напряжение, через транзисторы VT2, VT3 будет протекать очень маленький ток, и они не выйдут из строя. Защита отключается сразу же при устранении КЗ.

Детали

Трансформатор может быть любой с площадью сечения сердечника 4 см 2 и более. Первичная обмотка содержит 2200 витков провода ПЭВ-0,18, вторичная - 150-170 витков провода ПЭВ-0,45. Подойдёт и готовый трансформатор кадровой развёртки от старых ламповых телевизоров серии ТВК110Л2 или подобный. Диоды VD1-VD4 могут быть Д302-Д305, Д229Ж-Д229Л или любые на ток не менее 1 А и обратное напряжение не менее 55 В. Транзисторы VT1, VT2 могут быть любые низкочастотные маломощные, например, МП39-МП42. Можно использовать и кремниевые более современные транзисторы, например, КТ361, КТ203, КТ209, КТ503, КТ3107 и другие. В качестве VT3 - германиевые П213-П215 или более современные кремниевые мощные низкочастотные КТ814, КТ816, КТ818 и другие. При замене VT1 может оказаться, что защита от КЗ не работает. Тогда следует последовательно с VD5 включить ещё один диод (или два, если потребуется). Если VT1 будет кремниевый, то и диоды лучше применять кремниевые, например, КД209(А-В).

В заключение стоит заметить, что вместо указанных на схеме p-n-p транзисторов можно применять и аналогичные по параметрам транзисторы n-p-n (не вместо какого-либо из VT1-VT3, а вместо всех из них). Тогда нужно будет поменять полярности включения диодов, стабилитрона, конденсаторов, диодного моста. На выходе, соответственно, полярность напряжения будет другая.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

МП42Б

2 МП39-МП42, КТ361, КТ203, КТ209, КТ503, КТ3107 В блокнот
VT3 Биполярный транзистор

П213Б

1 П213-П215, КТ814, КТ816, КТ818 В блокнот
VD1-VD4 Диод

Д242Б

4 Д302-Д305, Д229Ж-Д229Л В блокнот
VD5 Диод

КД226Б

1 В блокнот
VD6 Стабилитрон

Д814Д

1 В блокнот
C1 2000 мкФ, 25 В 1 В блокнот
C2 Электролитический конденсатор 500 мкФ. 25 В 1 В блокнот
R1 Резистор

10 кОм

1 В блокнот
R2 Резистор

360 Ом

1 В блокнот
R3 Переменный резистор 4.7 кОм 1 В блокнот
R4, R5 Резистор

Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания - сетевыми, импульсными и аккумуляторами постоянного тока. Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.

Схема защиты блока питания

Силовая часть - мощный полевой транзистор - в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается. Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8 Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных. Шунт можно сделать также из резисторов с мощностью 1-3 ватт.

Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора. Схема защиты блока питания, регулятор ограничения тока Схема защиты блока питания, регулятор ограничения тока

~~~При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным

~~~Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные - IRF3205, IRL3705, IRL2505 и им подобные.

~~~Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.

~~~Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.

Комментарии
Защита от короткого замыкания , переплюсовки полярноси и перегруза собрана на отдельной плате. Силовой транзистор использован серии IRFZ44, но при желании можно заменить на более мощный IRF3205 или на любой другой силовой ключ, который имеет близкие параметры. Можно использовать ключи из линейки IRFZ24, IRFZ40, IRFZ46, IRFZ48 и другие ключи с током более 20 Ампер. В ходе работы полевой транзистор остается ледяным,. поэтому в теплоотводе не нуждается.


Второй транзистор тоже не критичен, в моем случае использован высоковольтный биполярный транзистор серии MJE13003, но выбор большой. Ток защиты подбирается исходя из сопротивления шунта — в моем случае 6 резисторов по 0,1Ом параллельно, защита срабатывает при нагрузке 6-7 Ампер. Более точно можно настроить вращением переменного резистора, таким образом я настроил ток срабатывания в районе 5 Ампер.



Мощность блока питания довольно приличная, выходной ток доходит до 6-7 Ампер, что вполне достаточно для зарядки автомобильного аккумулятора.
Резисторы шунта выбрал с мощностью 5 ватт, но можно и на 2-3 ватт.




Если все сделано правильно, то блок начинает работать сразу, замыкайте выход, должен загореться светодиодный индикатор защиты, который будет гореть до тех пор, пока выходные провода находятся в режиме КЗ.
Если все работает как нужно, то приступаем дальше. Собираем схему индикатора.

Схема срисована из зарядника аккумуляторной отвертки. Красный индикатор свидетельствует о том, что имеется выходное напряжение на выходе БП, зеленый индикатор показывает процесс заряда. С таким раскладом компонентов, зеленый индикатор будет постепенно потухат и окончательно потухнет, когда напряжение на аккумуляторе будет 12,2-12,4 Вольт, когда аккумулятор отключен, индикатор гореть не будет.

Практически каждый начинающий радиолюбитель стремится вначале своего творчества сконструировать сетевой блок питания, чтобы впоследствии использовать его для питания различных экспериментальных устройств. И конечно, хотелось бы, чтобы этот блок питания "подсказывал" об опасности выхода из строя отдельных узлов при ошибках или неисправностях монтажа.

На сегодняшний день существует множество схем, в том числе и с индикацией короткого замыкания на выходе. Подобным индикатором в большинстве случаев обычно служит лампа накаливания, включенная в разрыв нагрузки. Но подобным включением мы увеличиваем входное сопротивление источника питания или, проще говоря, ограничиваем ток, что в большинстве случаев, конечно, допустимо, но совсем не желательно.

Схема, изображенная на рис.1, не только сигнализирует о коротком замыкании, абсолютно не влияя на выходное сопротивление устройства, но и автоматически отключает нагрузку при закорачивании выхода. Кроме того, светодиод HL1 напоминает, что устройство включено в сеть, a HL2 светится при перегорании плавкого предохранителя FU1, указывая на необходимость его замены.

Электрическая принципиальная схема самодельного блока питания с защитой от коротких замыканий

Рассмотрим работу самодельного блока питания . Переменное напряжение, снимаемое со вторичной обмотки Т1, выпрямляется диодами VD1...VD4, собранными по мостовой схеме. Конденсатеры С1 и С2 препятствуют проникновению в сети высокочастотных помех, а оксидный конденсатор С3 сглаживает пульсации напряжения, поступающего на вход компенсационного стабилизатора, собранного на VD6, VT2, VT3 и обеспечивающего на выходе стабильное напряжение 9 В.

Напряжение стабилизации можно изменить, подбирая стабилитрон VD6, например, при КС156А оно составит 5 В, при Д814А - 6 В, при ДВ14Б - В В, при ДВ14Г -10 В, при ДВ14Д -12 В. При желании выходное напряжение можно сделать регулируемым, для этого между анодом и катодом VD6 включают переменный резистор сопротивлением 3-5 кОм, а базу VT2 подключают к движку этого резистора.

Рассмотрим работу защитного устройстваблока питания . Узел защиты от КЗ в нагрузке состоит из германиевого п-р-п транзистора VT1, электромагнитного реле К1, резистора R3 и диода VD5. Последний в данном случае выполняет функцию стабистора, поддерживающего на базе VT1 неизменное напряжение около 0,6 - 0,7 В относительно общего.

В обычном режиме работы стабилизатора транзистор узла защиты надежно закрыт, так как напряжение на его базе относительно эмиттера отрицательное. При возникновении короткого замыкания эмиттер VT1, как и эмиттер регулирующего VT3, оказывается соединенным с общим минусовым проводом выпрямителя.

Другими словами, напряжение на его базе относительно эмиттера становится положительным, вследствие чего VT1 открывается, срабатывает К1 и своими контактами отключает нагрузку, светится светодиод HL3. После устранения короткого замыкания напряжение смещения на эмиттерном переходе VT1 снова становится отрицательным и он закрывается, реле К1 обесточивается, подключая нагрузку к выходу стабилизатора.

Детали для изготовления блока питания. Электромагнитное реле любое с возможно меньшим напряжением срабатывания. В любом случае должно соблюдаться одно непременное условие: вторичная обмотка Т1 должна выдавать напряжение, равное сумме напряжений стабилизации и срабатывания реле, т.е. если напряжение стабилизации, как в данном случае 9 В, а U сраб реле 6 В, то на вторичной обмотке должно быть не менее 15 В, но и не превышать допустимое на коллекторе-эмиттере применяемого транзистора. В качестве Т1 на опытном образце автор использовал ТВК-110Л2. Печатная плата устройства изображена на рис.2.

Печатная плата блока питания

Лучшие статьи по теме