Гид компьютерного мира - Информационный портал
  • Главная
  • Instagram
  • Электрические измерения и измерительная аппаратура. И измерение электрических величин Технические измерение и контроль электрических величин

Электрические измерения и измерительная аппаратура. И измерение электрических величин Технические измерение и контроль электрических величин

Изучение электроизмерительных приборов. Методы расширения пределов измерения электроизмерительных приборов.

Цели работы:

1. Ознакомиться с методами расширения пределов электроизмерительных приборов;

3. Изготовить омметр и провести измерение сопротивлений с его помощью.

Приборы:

1. Гальванометр (миллиамперметр 50-100-200мА);

2. Амперметр (1-2) А;

3. Вольтметр (15-60) В;

4. Реостат (30 Ом);

5. Магазин сопротивлений типа Р-33;

6. Источник напряжения (типа ВС-24);

7. Проволока для изготовления шунта (медь);

8. Масштабная линейка;

9. Микрометр;

10. Соединительные провода

Примечание : Технические характеристики приборов записать в рабочую тетрадь.

Введение

Электрические измерения

Средства измерений – это особые технические средства, приводимые во взаимодействие с материальным объектом. Результатом измерений является значение физической величины. Физические величины подразделяют на непрерывные (аналоговые) и дискретные (квантованные). Большинство физических величин являются аналоговыми (напряжение, сила тока, температура, длина и т.д.). квантованной величиной является, например, электрический заряд.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для непосредственного восприятия наблюдателем.

Существуют следующие основные группы средств для измерения электрических, магнитных и неэлектрических физических величин:

Аналоговые электромеханические и электронные приборы

Цифровые измерительные приборы и аналого-цифровые преобразователи

Измерительные преобразователи электрических и неэлектрических величин в электрические сигналы

Регистрирующие приборы (самопишущие приборы, осциллографы, магнитографы и др.

Измерительные информационные системы и вычислительные комплексы и т.д.

Все приборы делятся на аналоговые измерительные приборы (например, электроизмерительный прибор с отсчетным устройством в виде стрелки, перемещающейся по шкале с делениями) и цифровые измерительные приборы (показания представляются в цифровой форме). Цифровые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы более точны, более удобны при снятии показаний и, в общем, более универсальны. В них измеряемая величина (например, напряжение) автоматически сравнивается с эталонной величиной, после ряда преобразований результат сравнения выдается на экран в виде светящегося числа. Цифровые универсальные измерительные приборы («мультиметры») и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока.

Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения величины во времени применяются региотрирующие приборы – ленточные самописцы и электронные осциллографы, аналоговые и цифровые. В цифровых измерительных приборах (кроме простейших) используются электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный, вакуумный люминесцентный или жидкокристаллический индикатор (дисплей). Прибор обычно работает под управление встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме.

Аналого-цифровые преобразователи. Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый «медленный». Время преобразования интегрирующего АЦП лежит в диапазоне от 0,01 до 50 с и более, погрешность составляет 0,1 – 0,003 %. Погрешность АЦП последовательного приближения несколько больше (0,4 – 0,002 %), но зато время преобразования от ~ 10мкс до ~ 1мс.

Параллельные АЦП – самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность – от 0,4 до 2%.

По роду измеряемой величины электроизмерительные приборы делят на следующие группы: амперметры (для измерения величины тока), вольтметры (для измерения напряжения), омметры (для измерения сопротивления), ваттметры (для измерения мощности), частотомеры (для измерения частоты), фазометры (для измерения сдвига фаз в электрических цепях) и т.д.

По способу представления результатов измерений приборы и устройства можно разделить на показывающие и регистрирующие. По методу измерения средства электроизмерительной техники можно разделить на приборы непосредственной оценки и приборы сравнения (уравновешивания). По способу применения и по конструкции электроизмерительные приборы и устройства делятся на щитовые, переносные и стационарные. По точности измерения приборы делятся на измерительные (в которых нормируются погрешности); индикаторы, или внеклассные приборы (погрешность измерений больше предусматриваемой соответствующими стандартами), и указатели (погрешность не нормируется).

По принципу действия или физическому явлению можно выделить следующие укрупненные группы: электромеханические, электронные, термоэлектрические и электрохимические. В зависимости от способа защиты схемы прибора от воздействия внешних условий корпуса приборов делятся на обыкновенные, водо-, газо-, и пылезащищенные, герметические, взрывобезопасные.

Измерение электрических величин

Гальванометр – электроизмерительный прибор с неградуированной шкалой, имеющий высокую чувствительность к току или напряжению и предназначенный для измерения весьма малых токов, напряжений, величины заряда. Используя комбинацию гальванометра с различными шунтами и добавочными сопротивлениями, можно изготовить приборы для измерения различных электрических величин (амперметры, вольтметры и т.д.)

Измерение токов

Для непосредственного измерения тока в цепи применятся амперметры, которые включаются в цепь так, чтобы через них проходил весь измеряемый ток, т.е. последовательно тем участкам цепи, где необходимо измерить ток. Амперметр должен иметь малое сопротивление, чтобы его включение в цепь не могло заметно изменить величину тока в цепи. Существуют четыре схемы включения амперметра в цепь. Первые две (рис. 1а, 16) предназначены для измерения постоянного тока, а две вторые схемы

(1в,1г) – для измерения переменного тока.

Вторая и четвертая схемы (рис 16,1 г) применяются в тех случаях, когда номинальные данные амперметра меньше измеряемой величины тока. В этом случае при определении истинного значения тока нужно учитывать коэффициент преобразования.

Для расширения пределов измерения амперметра параллельно ему необходимо присоединить проводник, называемый шунтом. Признаком параллельного соединения является разветвление тока. В данном случае электрический ток I 0 разветвляется на два тока I 0 и I m (рис.2), где R r – сопротивление гальванометра (исходного амперметра), I r – ток, протекающий через гальванометр (исходный амперметр), R m – сопротивление шунта, I ш – ток, протекающий через шунт, I 0 - ток, измеряемый амперметром с шунтом («новый» прибор).

Из закона сохранения зарядов следует, что:

I a = I m +I a (1)

Напряжение при параллельном соединении в ветвях одинаково, поэтому можно записать:

U= I m R m =I a R a

Откуда следует, что

При параллельном соединении проводников токи в отдельных проводниках обратно пропорциональны их сопротивлениям, т.е. чем меньше сопротивление шунта по сравнению с сопротивлением приборов, тем большая часть измеряемого тока отводится через шунт.

Коэффициентом шунта называется число, показывающее, во сколько раз предельный ток, измеряемый амперметром с шунтом, больше предельного тока, измеряемого гальванометром (исходной амперметром) без шунта:

Разделив обе части равенства (1) на I r , получим:

Но, так как

Равенство (4) можно записать так:

n = R r / R ш +1

Отсюда сопротивление шунта равно:

Таким образом, чтобы измерить амперметром в n раз больший ток, необходимо взять сопротивление шунта в (n-1) меньше сопротивления исходного амперметра.

где ρ – удельное сопротивление материала шунта,

L - длина проводника

S = / 4 – площадь поперечного сечения проводника, из которого изготовлен шунт

d – диаметр проволоки

Обычно шунты изготавливают из манганина, имеющего большое удельное сопротивление и малый термический коэффициент сопротивления.

Измерение напряжений

Для измерения напряжений в цепи применяются вольтметры, которые включаются в цепь параллельно (к тем точкам цепи, между которыми измеряется напряжение). Вольтметр должен иметь очень высокое внутреннее сопротивление, чтобы не влиять заметно на режим исследуемой цепи. Измерение напряжения производится вольтметром. Здесь также возможны четыре различных схемы подключения прибора (рис.3).

В этих схемах также используются методы расширения пределов измерения напряжения (вторая и четвертая схемы рис.3б, 3г), для расширения предела измерения вольтметра последовательно с ним включается добавочное сопротивление R 0 (рис.4).

По закону Ома:

или (7)

«Ни одной точной науки,

ни одной прикладной науки

без измерений.

Новые средства измерений

знаменуют собой настоящий прогресс».

/акад. Якаби Б. С./

Лекция 1

1. Введение и задачи курса.

2. Общие сведения об измерениях и измерительной аппаратуре:

а) основные понятия и определения;

б) системы единиц, основные единицы системы СИ;

в) виды средств эл. измерений;

г) меры электрических величин;

д) классификация электрических измерительных приборов;

е) основные характеристики и параметры электрических измерительных приборов.

Введение

Познание окружающей нас действительности, изучения закономерностей явлений природы, развитие науки и техники неразрывно связано с измерениями.

«Наука начинается... с тех пор, как начинают измерять; точная наука немыслима без меры». - писал Д. И. Менделеев.

Измерение, т. е. определение числового значения той или иной величины, играет исключительную роль в народном хозяйстве. Нет такой области науки и техники, нет такой отрасли промышленности или сельского хозяйства, где одним из решающих факторов не было бы измерение как таковое.

Научно-технический прогресс является центральной экономической и важной политической задачей нашей страны. Стержнем научно-технического прогресса является повышение производительности труда путем автоматизации производства, автоматизации управления и ускорения научных исследований с целью быстрейшего внедрения их производства.

Главная задача 10-ой пятилетки состоит в последовательном осуществлении курса КПСС на подъем материального и культурного уровня жизни народа на основе динамичного и пропорционального развития общественного производства и повышения его эффективности, ускорения научно-технического прогресса, роста производительности труда, всемирного улучшения качества работы во всех звеньев народного хозяйства.

Для решения этих задач предусматривается в промышленности...

Расширить выпуск прогрессивных, экономичных видов машин, оборудования и примеров для всех отраслей народного хозяйства.

Увеличить выпуск приборов и средств автоматизации в 1,6-1,7 раза, средств вычислительной техники в 1,8 раза.

Развивать производство... устройств регистрации и передачи информации для автоматизированных систем управления технологическими процессами и оптимального управления в отраслях народного хозяйства.

Расширить производство приборов для нужд сельского хозяйства.

Изучение явлений природы, отыскание законов, которым эти явления подчинены, и вообще всякие научные изыскания всегда связаны с измерениями, так как такие исследования сводятся в конечном итоге к определению количественных соотношений, через которые вскрываются и качественные стороны изучаемых явлений и предметов.

Совершенствование техники измерений, проявляющееся в повышение точности измерений и в создании новых методов и приборов, способствует определенным новым достижениям в науке.

Новые открытия в науке в свою очередь приводят к совершенствованию техники измерений, а также к созданию новых приборов.

Современная информационно-измерительная техника располагает совокупностью средств измерения около двухсот различных физических величин электрических, магнитных, тепловых, механических, световых, акустических и др.

Огромное количество различных величин в процессе измерения преобразуется в величины электрические как наиболее удобные для передачи, усиления сравнения, точного измерения.

Поэтому в развитии современной информационно-измерительной технике преобладающие значение приобретает развитие средств измерений электрических величин.

Уровень развития электроизмерительной техники в значительной степени определяет состояние технического прогресса во всех отраслях народного хозяйства. 29.04.1745г. был представлен академиком Рихмоном общему собранию Петебуржской академии «Указатель электрической искры » - первый электроизмерительный прибор.

В настоящее время без качественной эл. измерительной техники невозможно проведение научных исследований на современном уровне, а также невозможно реализация потенциала современного парка ЭВМ, разработка и внедрение систем автоматизированного контроля и управления – основного средства технического прогресса и повышения производительности труда.

Электроизмерительные приборы и устройства широко применяются в промышленности при научных исследованиях, в космонавтике, на транспорте в системах связи и навигации, в геологоразведке, в гидрометеорологии и во многих других областях трудовой деятельности человека.

Это объясняется преимуществами, присущими электрическим измерениям, основными из которых являются:

1. Широкий диапазон измеряемых величин, характеризуемый 18-го разрядами (например, по напряжению от 10-14 до 106 В, по току от 10-9 до 106 А, по сопротивлению от 10-6 до 10-14 Ом);

2. Высокая чувствительность (например, по току 1*1012 мм/А, по напряжению 1·106 мм/В).

3. Высокая точность. Погрешность современных показывающих приборов доведена до 0,05%, а приборов сравнения – до 0,001%.

4. Возможность получать значение измеряемой величины не только в данный момент, но и записывать изменение ее во времени.

5. Осуществимость измерений на расстоянии (телеизмерения).

6. Возможность измерять неэлектрические величины электрическими методами.

7. Осуществимость автоматизации получения и обработки результатов измерения.

8. Возможность производить измерения без нарушения хода технологического процесса.

9. Возможность измерения как медленно так и быстро изменяющихся величин.

Выполнение величественных планов развития народного хозяйства 10-ой пятилетке, осуществление грандиозных строительств, ставят перед всеми отраслями советской промышленности новые задачи. Такие задачи стоят и перед электротехникой – в частности, и перед электроизмерительной техникой.

Увеличение выработки эл. энергии в стране к 1980 году до 1340-1380 млрд. кВт*ч, осуществление плана комплексной механизации и автоматизации производства потребуют создания качественно новых электроизмерительных приборов и устройств, замены устаревших приборов современными, основанными на новых принципах измерениях.

В настоящее время электроизмерительная техника интенсивно развивается в следующих направлениях:

а) повышение точности и быстродействия, расширение частичного диапазона, улучшение конструкции многообразных эл. измерительных приборов;

б) расширение номенклатуры и улучшение характеристик разнообразных измерительных преобразователей, широко применяемых при измерениях электрических и неэлектрических величин, а также в системах автоматического управления;

в) разработка и выпуск различных специализированных эл. измерительных установок, предназначенных для проверки эл. измерительных приборов, испытания ферромагнитных материалов и других целей;

г) выпуск и совершенствование ИИС, предназначенных для автоматического получения, передачи, обработки и представления в той или иной форме и в значениях измеряемых или контролируемых физических величин (ИИС – информационно-измерительной системы);

д) совершенствование и создание новых государственных эталонов единиц эл. величин, что обеспечивает повышение уровня точности эл. измерений.

Особую роль должны сыграть эл. измерения в электрификации с/х. Возрастающая с каждым годом автоматизация производственных процессов в животноводстве и полеводстве, внедрение эл. энергии в биологические процессы на базе общей электрификации с/х неразрывно связаны с развитием эл. измерительной техники.

В связи с автоматизацией управления и регулирования, которые все меры будут внедрять в с/х производство, значительно усложняются требования к эл. измерительной технике. Наличающийся постепенный переход к технологии поточного производства ив животноводстве и полеводстве выдвигает новые требования к технологическим измерениям, обеспечивающим высокую надежность работы и качества продукции.

Решение указанных задач сегодня требует, чтобы инженер с/х производства хорошо ориентировался в обширном круге вопросов, обладал серьезной технической эрудицией.

В частности, от инженера-электрика требуется глубокое знание теории и практики эл. измерений.

2. Общие сведения об измерениях и измерительной аппаратуре.

а) основные понятия и определения.

Количественная оценка свойств различных объектов измерения (исследования) осуществляется путем измерения физических величин, характеризующих указанные свойства.

Измерением называется познавательный процесс, заключающийся в сравнении опытным путем измеряемой величины с некоторым ее значением, принятым за единицу.

В более широком смысле

Измерение – это процесс приема и преобразования информации об измеряемой величине для получения количественного результата ее сравнения с единицей измерения в форме, наиболее удобной для исследования.

Таким образом, измерение представляет собой процесс получения информации: после измерения мы узнаем о численном значении измеряемой величины, ее связях и соотношениях с другими величинами больше, чем мы знали до измерения.

Значит, измерение это экспериментальное сравнение измеряемой величины с другой однородной величиной, принятой и узаконенной в качестве единицы. Так как измерение представляет собой физический эксперимент, оно не может быть осуществлено умозрительно, абстрактно. Из этого следует, что для любого измерения необходимы узаконенная система единиц и технические средства ее осуществления.

Результатом измерения всегда является числовое значение измеряемой величины А, которое равно отношению измеряемой величины Аиз к единице измерения Х. Иными словами, числовое значение показывает, во сколько раз измеряемая величина больше или меньше единицы измерения.

Процесс измерения, следовательно, может быть записан так:

А= Аиз/Х, откуда Аиз= А·Х, т. е. «измеряемая величина Аиз составляет столько-то А единиц Х».

Последнее уравнение называется основным уравнением измерения.

б) система единиц. Основные единицы СИ.

Системой единиц называется совокупность основных и производных единиц измерения, охватывающих некоторую область измерений физических величин.

В СССР с 1 января 1963 года введен в действие ГОСТ 9867-61, которым рекомендуется применение СИ как предпочтительной во всех областях науки и технике, а также при преподавании.

Международная система единиц (СИ) построена на семи основных единицах двух дополнительных и 27 производных.

Основные единицы СИ.

Размер основных единиц устанавливается независимо от размеров других единиц.

Производные единицы – определяются уравнениями связи, выражающими математическую зависимость данной единицы от других единиц.

Наименование величины

Единица измерения

Сокращенное обозначение

русское

латинское

килограмм

Сила эл. тока

Термодинам.

температуры

Сила света

Количество

вещества

моль

Дополнительные единицы

1. Радиан – угол между двумя радиусами круга, вырезающими на его окружности дугу, длина которой равна радиусу (единицы линейного угла).

2. Стерадиан – телесный угол, величина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной равной радиусу сферы (единицы телесного угла).

В измерительной практике очень часто пользуются кратными и дольными единицами. Они образуются путем умножения целых единиц на 10к, где к – целое число. При этом к наименованиям единиц прибавляют соответствующие приставки.

Дольность или кратность

Наименование приставки

Сокращенные обозначения (русское)

Дольность или кратность

Наименование

приставки

Сокращенное обозначение

(русское)

Виды средств электрических измерений.

Средствами электрических измерений называют технические средства, используемые при электрических измерениях и имеющие нормированные метрологические свойства.

Различают следующие виды средств электрических измерений:

2. Электрические измерительные приборы.

3. Измерительные преобразователи.

4. Электроизмерительные установки.

5. Измерительные информационные системы (ИИС).

Мерами называют средства измерений, предназначенные для воспроизведения физической величины заданного размера. (Вещественно воспроизведенная единица измерения).

Различают однозначные, многозначные меры и набор мер.

Однозначная мера воспроизводит физическую величину одного размера.

Многозначная мера воспроизводит ряд одноименных величин различного размера (конденсатор переменной емкости, вариометр индуктивности и др.).

Набор мер представляет собой специально подобранный комплект мер, применяемых не только по отдельности, но и в различных сочетаниях с целью воспроизведения ряда одноименных величин различного размера (магазин сопротивлений).

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов измерительной информации, т. е. сигналов функционально связанных с измеряемыми физическими величинами, в форме, доступной для непосредственного восприятия наблюдателем.

Меры электрических величин.

В практике электрических измерений в качестве мер широко используют меры э. д.с., электрических сопротивлений, индуктивности, взаимоиндуктивности и емкости.

Мера Э. Д.С. Образцовой мерой э. д.с. служит нормальный элемент, представляющий собой гальванический элемент, характеризующийся весьма стабильным значением, развиваемой им э. д.с. Э. Д.С. н. э. отличаются от 1 В, но она точно известна. Это достигается подбором составных частей элемента из строго определенных по химическому составу веществ, точной их дозировкой и строго однообразной конструкцией. При температуре 20оС э. д.с. насыщенного н. э. составляет 1.0185 – 1.0187 В, т. е. наиболее допустимое расхождение значений э. д.с. превосходит 200 мкВ. Н. Э. изготавливают двух типов: насыщенные и ненасыщенные, отличающиеся друг от друга конструкцией, электролитом и стабильностью развиваемой э. д.с. Ненасыщенные – имеют меньшее внутренние сопротивление (~300 Ом) и малый температурный коэффициент. При температуре от 10 до 40оС – не превышает 15 мкВ на 1оС. У насыщенных – температурный коэффициент в 4 раза больше э. д.с.

Н. Э. мало меняется во времени. Согласно ГОСТ 1954 – 64, допускается изменение э. д.с. насыщенного н. э. за год не более 50 – 100 мкВ.

В зависимости от точности определения э. д.с., ее стабильности н. э. подразделяются на классы.

Н. Э. не может быть использован как источник электрической энергии, его нельзя нагружать током, превышающим допустимые значения.

Меры электрического сопротивления выполняют в виде образцовых измерительных катушек сопротивления или измерительных магазинов сопротивления. Значение сопротивлений их 10±n Ом, где n – целое число.

Образцовые катушки снабжают двумя парами зажимов, два из которых называются токовыми и предназначены для включения образцовой катушки в цепь тока, два других называются потенциальными. Сопротивление между потенциальными зажимами равно сопротивлению образцовой катушки к потенциальным зажимам присоединяются провода, идущие к измерительной схеме.

К материалу, из которого изготавливаются катушки, предъявляются следующие требования:

1) возможно больше удельное сопротивление;

2) наименьшей температурный коэффициент и термо э. д.с. в паре с другими металлами;

3) устойчивость металла провода против окисления.

Этим требованиям лучше всего удовлетворяет манганин.

В зависимости от погрешности образцовых сопротивлений и других характеристик (изменение сопротивлений с течением времени, допустимой мощности и др.) образцовые сопротивления делятся на классы точности, для которых погрешности и другие характеристики нормируются соответствующими ГОСТ.

Меры индуктивности и взаимоиндуктивности.

Меры L и M выполняют в виде отельных катушек или магазинов. Образцовые катушки индуктивности и взаимной индуктивности обычно изготавливают в виде плоских катушек из изолированной тонкой проволоки, намотанной на каркас. Катушки должны обладать постоянство индуктивности, малым активным сопротивлением, независимостью индуктивности от величины тока и возможно малой зависимостью индуктивности от чистоты тока.

Для получения независимости L катушки от силы тока каркас катушки изготавливают из материала, М которого равна единицы и не зависит от магнитной индукции в нем (фарфор, мрамор, керамика, пластмассы, реже – дерево). Для обмоток выбирают многожильный провод (для уменьшения влияния частоты – уменьшают распределенную емкость).

Катушки взаимной индуктивности состоят из двух обмоток, жестко укрепленных на общем каркасе.

Мерами с переменными значениями L и М служат вариометры.

Меры емкости . Ими служат воздушные (не более 11000 пФ) или слюдяные конденсаторы постоянной и переменной емкости.

Образцовые меры емкости должны обладать постоянством емкости и малым ее температурным коэффициентом, весьма малыми потерями энергии в диэлектрике, независимостью емкости от частоты и формы кривой тока и высоким сопротивлением и прочностью изоляции.

Классификация мер и измерительных приборов.

Электрические измерительные приборы весьма разнообразны по принципу действия и конструктивному оформлению, вследствие различных требований, предъявляемых к ним.

Меры и измерительные приборы можно классифицировать по ряду признаков.

1. По функциональному признаку:

а) средства сбора, обработки и представления информации;

б) средства аттестации и проверки.

а) рабочие меры и измерительные приборы;

б) образцовые меры и измерительные приборы;

в) эталоны.

Эталон – это мера, воспроизводящая единицу измерения с наибольшей для данного исторического времени точностью.

2. По способу представления результатов измерения:

а) показывающие;

б) регистрирующие.

3. По методу измерения:

а) непосредственного отсчета;

б) сравнения.

4. По способу применения и по конструкции:

а) переносные;

б) стационарные.

5. По точности измерения:

а) измерительные;

б) индикаторы;

в) указатели.

6. По способу воспроизведения измеряемой величины:

а) аналоговые;

б) цифровые.

Аналоговые – электрические измерительные приборы, показания которых являются непрерывными функциями изменений измеряемой величины.

Цифровые – электрические измерительные приборы, автоматически вырабатывающие дискретные сигналы изменения информации, показания которых представлены в цифровой форме.

Чтоб измерять электрическую величину используют технические средства, которые имеют определенные метрологические характеристики. Их называют средствами измерения.

Измерительные установки и приборы, меры, измерительные преобразователи – это все относится к средствам измерения.

Для воспроизведения заданного значения физической величины используют меры.

Меры электрических величин – индуктивность, ЭДС, электрическое сопротивление, электрической емкость и т.д. Образцовыми называют меры высшего класса, по ним сверяют приборы и проводят градуировку шкал устройств.

Устройства, которые вырабатывают электрический сигнал в форме удобной для обработки, передачи, дальнейшего преобразования или хранения, но не поддающиеся непосредственному восприятию называют измерительными преобразователями. Для преобразования электрических величин в электрические относят: делители напряжения, шунты и т.д. Не электрических в электрические (датчики давления, энкодеры).

Если форма сигналов доступна для наблюдения – это измерительные приборы (вольтметры, амперметры и т.д.).

Совокупность измерительных приборов и преобразователей, мер, которые располагаются в одном месте и генерирует при измерении форму сигнала, удобную для наблюдению именуют измерительной установкой.

Все выше перечисленные средства можно рассортировать по следующим признакам: по способу регистрации и представления информации, ее виду и методу измерения.

По виду получаемой информации:

  • Электрические (мощность, ток и т.д.);
  • Не электрические (давление, скорость);

По методу измерения:

  • Сравнение (компенсаторы, измерительные мосты);
  • Непосредственная оценка (ваттметр, вольтметр);

По способу представления:

  • Цифровые;
  • Аналоговые (электронные или электромеханические);

Электроизмерительные приборы характеризуют такими основными показателями как: чувствительность, время установления показаний, надежность, погрешность, вариации показаний.

Самая большая разность показаний одного и того же устройства при одном и том же показании измеряемой величины называют вариацией показаний. Основная причина ее появления это трения в подвижных частях устройств.

Приращение перемещения указателя ∆а, относящееся к приращению измеряемой величины ∆х величают как чувствительность прибора S:

Если шкала устройства равномерна, то формула будет иметь вид:

Постоянная или цена деления прибора – обратная величина чувствительности С:

Равна она числу измеряемой величины на одно деление шкалы.

Потребляемая устройством из цепи мощность изменяет режим работы цепи. Это увеличивает вероятность появления погрешностей при измерении. Отсюда делаем вывод: чем меньше мощность, потребляемая из цепи, тем точнее прибор.

Время, за которое на дисплее (если приборы цифровые) или шкале (аналоговые), установится значение измеряемой величины после начала измерения – время установления показаний. Для аналоговых стрелочных устройств не должно превышать 4 секунды.

Сохранение заданных характеристик, точность показаний при установленных условиях работы и в течении заданного промежутка времени называют надежностью. Еще она характеризуется как среднее время исправной работы устройства.

Можно сделать вывод что при выборе измерительных устройств необходимо учитывать множество факторов, для корректной работы данных средств. Например, такие средства измерения как трансформаторы тока активно используются при измерении токов силовых линий, и не корректный выбор данных средств измерения может привести к авариям на линиях, вывода из строя дорогостоящего оборудования и остановки производства или отключением от питания целых городов.

Ниже вы можете посмотреть видео об основах метрологии и измерениях различных величин.

Методы и средства измерений, испытаний и Контроля

Приобретение наследства

Для приобретения наследства наследник должен его принять. Принятие наследства может быть осуществлено несколькими спо­собами. Во-первых, посредством подачи письменного заявления о при­нятии наследства нотариусу по месту открытия наследства либо заяв­ления о выдаче свидетельства на право наследования.Во-вторых, наследник признается принявшим наследство, если он совершил действия, об этом свидетельствующие, в частности: вступил во владение или управление наследственным имуществом; принял меры по сохранению наследственного имущества; произвел за свой счет расходы на содержание этого имущества; оплатил за свой счет долги наследодателя или получил от его долж­ников причитавшиеся ему денежные средства.

Наследство может быть принято в течение шести месяцев со дня открытия наследства. Наследство может быть принято и по ис­течении шестимесячного срока, если на это согласны все остальные наследники и они выразили свое согласие в письменной форме, заве­рив документ у нотариуса.Еще один случай удлинения срока - на­следственная трансмиссия. Если наследник умер, не успев принять наследство, то право принятия наследства переходит наследнику этого наследника. Наслед­ник может отказаться от всего или части наследства, он может указать лиц, в пользу которых отказывается от наследства, а может не указы­вать. Отказ может быть адресован только наследникам по закону, но любой очере­ди. ГК РФ устанавливает некоторые преимущественные права насле­дования для ряда наследников:наследник, который имел вместе с наследодателем в общей соб­ственности недвижимую вещь, имеет преимущественное перед други­ми наследниками право на получение этой вещи в счет своей имуще­ственной доли;наследник, который постоянно пользовался недвижимой вещью, имеет преимущественное право получить ее; наследник, совместно проживавший с наследодателем на день от­крытия наследства, имеет преимущественное право на получение в счет своей доли предметов обычной домашней обстановки. Наследник пая в любом потребительском кооперативе имеет право стать членом этого кооператива либо полу­чить пай в денежной форме.


Лекция 1

основная

1. Марков, Н.Н. Конструкция, расчет и эксплуатация контрольно-измерительных инструментов и приборов: учеб. для техникумов / Н.Н. Марков, Г.М. Ганевский. - М.: Машиностроение, 1993. – 416 с.

2. Белкин, И.М. Средства линейно-угловых измерений / И.М. Белкин. – М.: Машиностроение, 1987. – 368 с.


дополнительная

3. Сорочкин, Б.М. Средства для линейных измерений / Б.М. Сорочкин, Ю.З. Тененбаум, А.П. Курочкин, Ю.Д. Виноградов. – Л.: Машиностроение. Ленигр. отд-ние, 1978. – 264 с.

4. Куликовский, К.Л. Методы и средства измерений: учеб. пособие для вузов / К.Л. Куликовский, В.Я. Купер. – М.: Энергоатомиздат, 1986. – 448 с.

5. Тартаковский, Д.Ф. Метрология, стандартизация и технические средства измерений: учеб. для вузов / Д.Ф. Тартаковский, А.С. Ястребов. – М.: Высш. шк., 2001. – 205 с.

Измерение, испытание и контроль являются составными частями обеспечения качества продукции.

Измерение - процесс сравнения физической величины с некоторым ее значением, принятым за единицу. Единицы физических величин устанавливаются соответствующими документами (ГОСТ Р).

Вместе с термином «измерение», а иногда вместо него используют термин «контроль», например, говорят «средства измерения и контроля».

Контроль - разновидность измерения, при которой в результате процесса сравнения (измерения) устанавливают соответствие объекта измерения (контроля) заданным предельным значениям физических величин.

Результаты контроля, выдаются не в виде значения физической величины, а в виде информация о годности или негодности контролируемого объекта или параметра.

По результатам контроля часто предпринимаются действия по управлению процессом производства, а также проводится разделение контролируемых объектов на размерные группы в пределах определенных значений или разделение контролируемых деталей на группы годности (годные и брак). Термин «контроль» чаще всего применяют при использовании калибров и автоматических средств измерения.

Очень часты случаи, когда измерение производят с целью контроля, находят значение измеряемого размера, затем сравнивают с допускаемыми наибольшими и наименьшими значениями и определяют годность или негодность детали.

Лучшие статьи по теме